Matter under Extreme Conditions: Classification of States

Part of the The Frontiers Collection book series (FRONTCOLL)


Figures 2.1 and 2.2 show the diagrams for the extreme conditions that are realized in a number of natural physical objects and in laboratory experiments. Of course, the parameters given are no better than an estimate and provide only the most general impression of the order of magnitude of the quantities under discussion.


Shock Wave Pair Production High Energy Density Nonideal Plasma Underground Nuclear Explosion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Al’tshuler, L.V.: Use of shock waves in high-pressure physics. Sov. Phys. –Usp. 8(1), 52–91 (1965). DOI 10.1070/PU1965v008n01ABEH003062. URL
  2. [2]
    Al’tshuler, L.V., Trunin, R.F., Urlin, V.D., et al.: Development ofdynamic high-pressure techniques in Russia. Phys. Usp. 42(3),261 (1999). DOI 10.1070/PU1999v042n03ABEH000545. URL Scholar
  3. [3]
    Anisimov, S.I., Prokhorov, A.M., Fortov, V.E.: Application of high-powerlasers to study matter at ultrahigh pressures. Sov. Phys. – Usp. 27(3),181–205 (1984). DOI 10.1070/PU1984v027n03ABEH004036. URL CrossRefADSGoogle Scholar
  4. [4]
    Ashkroft, N.A.: Condensed matter at higher densities. In: G.L. Chiarotti, R.J.Hemley, M. Bernasconi, L. Ulivi (eds.) High Pressure Phenomena, Proceedingsof the International School of Physics “Enrico Fermi” Course CXLVII, p.151. IOS Press, Amsterdam (2002)Google Scholar
  5. [5]
    Atzeni, S., Meyer-ter-Vehn, J.:The Physics of Inertial Fusion. Oxford UniversityPress, Oxford (2004)CrossRefGoogle Scholar
  6. [6]
    Bamber, C., Boege, S.J., Koffas, T., et al.: Studies of nonlinear QEDin collisions of 46.6 GeV electrons with intense laser pulses. Phys.Rev. D 60(9), 092004 (1999). DOI 10.1103/PhysRevD.60.092004. URL Google Scholar
  7. [7]
    Bezkrovniy, V., Filinov, V.S., Kremp, D., et al.: Monte Carloresults for the hydrogen Hugoniot. Phys. Rev. E 70(5),057401 (2004). DOI 10.1103/PhysRevE.70.057401. URL Google Scholar
  8. [8]
    Burke, D.L., Field, R.C., Horton-Smith, G., et al.: Positron productionin multiphoton light-by-light scattering. Phys. Rev. Lett.79(9),1626–1629 (1997). DOI 10.1103/PhysRevLett.79.1626. URL Google Scholar
  9. [9]
    Calderola, P., Knopfel, H. (eds.): Physics of High Energy Density. Academic,New York (1971)Google Scholar
  10. [10]
    Cavailler, C.: Inertial fusion with the LMJ. Plasma Phys. Control. Fusion47(12B), B389–B403 (2005). DOI 10.1088/0741-3335/47/12B/S28Google Scholar
  11. [11]
    Clark, E.L., Krushelnick, K., Davies, J.R., et al.: Measurementsof energetic proton transport through magnetized plasma fromintense laser interactions with solids. Phys. Rev. Lett. 84(4),670–673 (2000). DOI 10.1103/PhysRevLett.84.670. URL Google Scholar
  12. [12]
    Cuneo, M.E., Vesey, R.A., Bennett, G.R., et al.: Progress in symmetric ICFcapsule implosions and wire-array Z-pinch source physics for double-pinchdrivenhohlraums. Plasma Phys. Control. Fusion 48(2), R1–R35 (2006). DOI 10.1088/0741-3335/48/2/R01CrossRefADSGoogle Scholar
  13. [13]
    Drake, R.P.:High-Energy-Density Physics. Springer, Berlin, Heidelberg(2006)Google Scholar
  14. [14]
    Dubin, D.H.E., O’Nail, T.M.: Trapped nonneutral plasmas, liquids and crystals(the thermal equilibrium states). Rev. Mod. Phys. 71, 87 (1999)CrossRefADSGoogle Scholar
  15. [15]
    Faber, T.E.:Fluid Dynamics for Physicists. Cambridge University Press, Cambridge(1977)Google Scholar
  16. [16]
    Filinov, V.S., Bonitz, M., Levashov, P., et al.: Plasma phase transition in densehydrogen and electron–hole plasmas. J. Phys. A 36(22), 6069–6076 (2003). DOI 10.1088/0305-4470/36/22/332zbMATHCrossRefADSGoogle Scholar
  17. [17]
    Filinov, V.S., Levashov, P.R., Bonitz,M., Fortov, V.E.: Calculation of the shockHugoniot of deuterium atpressures above 1 Mbar by the path-integral MonteCarlo method. Plasma Phys. Rep. 31(8),700–704 (2005). DOI 10.1134/1.2031631CrossRefADSGoogle Scholar
  18. [18]
    Fortov, V., Iakubov, I., Khrapak, A.:Physics of Strongly Coupled Plasma. OxfordUniversity Press, Oxford (2006)zbMATHCrossRefGoogle Scholar
  19. [19]
    Fortov, V.E. (ed.):Entsiklopediya nizkotemperaturnoi plazmy (Encyclopediaof Low-Temperature Plasma).Nauka, Moscow (2000)Google Scholar
  20. [20]
    Fortov, V.E.:Intense Shock Waves and Extreme States of Matter. Bukos,Moscow (2005)Google Scholar
  21. [21]
    Fortov, V.E.: Intense shock waves and extreme states of matter. Phys.Usp. 50(4), 333 (2007). DOI 10.1070/PU2007v050n04ABEH006234. URL
  22. [22]
    Fortov, V.E., Hoffmann, D.H.H., Sharkov, B.Y.: Intense ion beamsfor generating extreme states of matter. Phys. Usp. 51(2), 109(2008). DOI 10.1070/PU2008v051n02ABEH006420. URL
  23. [23]
    Fortov, V.E., Ilkaev, R.I., Arinin, V.A., et al.: Phase transitionin a strongly nonideal deuterium plasma generated by quasiisentropicalcompression at megabar pressures. Phys. Rev. Lett.99(18), 185001 (2007). DOI 10.1103/PhysRevLett.99.185001. URL 2 Matter under Extreme Conditions: Classification of StatesGoogle Scholar
  24. [24]
    Fortov, V.E., Ivlev, A.V., Khrapak, S.A., et al.: Complex (dusty) plasma: currentstatus, open issues, perspectives. Phys. Rep. 421(1), 1–103 (2005). DOI 10.1016/j.physrep.2005.08.007CrossRefMathSciNetADSGoogle Scholar
  25. [25]
    Fortov, V.E., Khrapak, A.G., Khrapak, S.A., et al.: Dusty plasmas. Phys.Usp. 47(5), 447 (2004). DOI 10.1070/PU2004v047n05ABEH001689. URL
  26. [26]
    Fortov, V.E., Khrapak, A.G., Yakubov, I.T.: Fizika neideal’noi plazmy (Physicsof Nonideal Plasma). Fizmatlit, Moscow (2004)Google Scholar
  27. [27]
    Fortov, V.E., Ternovoi, V.Y., Zhernokletov,M.V., et al.: Pressure-produced ionizationof nonideal plasma in a megabar range of dynamic pressures. JETP97(2), 259–278 (2003). DOI 10.1134/1.1608993CrossRefADSGoogle Scholar
  28. [28]
    Ginzburg, V.L.:The Physics of a Lifetime: Reflections on the Problems andPersonalities of 20th Century Physics. Springer, Berlin, Heidelberg (2001)Google Scholar
  29. [29]
    Ginzburg, V.L.: On superconductivity and superfluidity (what I have andhave not managed to do), as well as on the “physical minimum” atthe beginning of the XXI century (December 8, 2003). Phys. Usp.47(11), 1155 (2004). DOI 10.1070/PU2004v047n11ABEH001825. URL
  30. [30]
    Giorla, J., Bastian, J., Bayer, C., et al.: Target design for ignition experimentson the laser M´egajoule facility. Plasma Phys. Control. Fusion 48(12B), B75–B82 (2006). DOI 10.1088/0741-3335/48/12B/S0CrossRefGoogle Scholar
  31. [31]
    Grabovskii, E.V., Vorob’ev, O.Y., Dyabilin, K.S., et al.: Excitation of intenseshock waves by soft x radiation from a Z-pinch plasma. JETP Lett. 60(1), 1(1994)ADSGoogle Scholar
  32. [32]
    Hemley, R.J., Ashcroft, N.W.: The revealing role of pressure in the condensedmatter sciences. Phys. Today 51(8), 26–32 (1998). DOI 10.1063/1.882374CrossRefGoogle Scholar
  33. [33]
    Hemley, R.J., Mao, H.K.: Overview of static high pressure science. In: R.J.Hemley, G.L. Chiarotti, M. Bernasconi, L. Ulivi (eds.) High Pressure Phenomena,Proceedings of the International School of Physics “Enrico Fermi”Course CXLVII, p. 3. IOS Press, Amsterdam (2002)Google Scholar
  34. [34]
    Hogan,W.J. (ed.): Energy from Inertial Fusion. IAEA, Vienna, Austria (1995)Google Scholar
  35. [35]
    Kirzhnits, D.A.: Extremal states of matter (ultrahigh pressuresand temperatures). Sov. Phys. – Usp. 14(4), 512–523(1972). DOI 10.1070/PU1972v014n04ABEH004734. URL
  36. [36]
    Kirzhnits, D.A., Lozovik, Y.E., Shpatakovskaya, G.V.: Statisticalmodel of matter. Sov. Phys. – Usp. 18(9), 649–672(1975). DOI 10.1070/PU1975v018n09ABEH005199. URL
  37. [37]
    Knudson, M.D., Hanson, D.L., Bailey, J.E., et al.: Equation of statemeasurements in liquid deuterium to 70 GPa. Phys. Rev. Lett.87(22), 225501 (2001). DOI 10.1103/PhysRevLett.87.225501. URL 23Google Scholar
  38. [38]
    Konyukhov, A.V., Likhachev, A.P., Oparin, A.M., et al.: Numerical modelingof shock-wave instability in thermodynamically nonideal media. JETP 98(4),811–819 (2004). DOI 10.1134/1.1757680CrossRefADSGoogle Scholar
  39. [39]
    Kruer, W.L.: The Physics of Laser Plasma Interactions. Addison-Wesley,Reading, MA (1988)Google Scholar
  40. [40]
    Lebedev, S.V., Ciardi, A., Ampleford, D.J., et al.: Magnetic tower outflowsfrom a radial wire array Z-pinch. Month. Notices R. Astronom.Soc. 361(1), 97–108 (2005). DOI 10.1111/j.1365-2966.2005.09147.x. URL Google Scholar
  41. [41]
    Lindl, J.D.:Inertial Confinement Fusion. Springer, New York (1998)Google Scholar
  42. [42]
    Loubeyre, P., Occelli, F., Le Toulec, R.: Optical studies of solid hydrogen to320 GPa and evidence for black hydrogen. Nature 416(6881), 613–617 (2002). DOI 10.1038/416613aCrossRefADSGoogle Scholar
  43. [43]
    Mackinnon, A.J., Borghesi, M., Hatchett, S., et al.: Effect of plasma scalelength on multi-MeV proton production by intense laser pulses. Phys. Rev.Lett. 86(9), 1769–1772 (2001). DOI 10.1103/PhysRevLett.86.1769. URL Google Scholar
  44. [44]
    MAGPIE Project:MAGPIE Project Home Page. URL
  45. [45]
    Maksimchuk, A., Gu, S., Flippo, K., et al.: Forward ion accelerationin thin films driven by a high-intensity laser. Phys. Rev. Lett.84(18), 4108–4111 (2000). DOI 10.1103/PhysRevLett.84.4108. URL Google Scholar
  46. [46]
    Moses, E.I., Bonanno, R.E., Haynam, C.A., et al.: The National Ignition Facility:path to ignition in the laboratory. Eur. Phys. J. D 44(2), 215–218 (2006). DOI 10.1140/epjd/e2006-00106-3CrossRefADSGoogle Scholar
  47. [47]
    Mourou, G.A., Tajima, T., Bulanov, S.V.: Optics in the relativistic regime. Rev.Mod. Phys. 78(2), 1804–1816 (2006). DOI 10.1103/RevModPhys.78.309.URL Google Scholar
  48. [48]
    Murray, C.A., Wenk, R.A.: Observation of order–disorder transitions and particletrajectories in a model one-component plasma: time resolved microscopyof colloidal spheres. In: H.M. Van Horn, S. Ichimaru (eds.) Strongly CoupledPlasma Physics, p. 367. University of Rochester Press, Rochester, NY (1993)Google Scholar
  49. [49]
    National Research Council: Frontiers in High Energy Density Physics. NationalAcademies Press, Washington, DC (2003)Google Scholar
  50. [50]
    Nellis, W.J.: Dynamic compression of materials: metallization of fluid hydrogenat high pressures. Rep. Prog. Phys. 69(5), 1479–1580 (2006). DOI 10.1088/0034-4885/69/5/R05CrossRefADSGoogle Scholar
  51. [51]
    Okun’, L.B.: Leptony i kvarki, 2nd edn. Nauka, Moscow (1990). [EnglishTransl.: Leptons and Quarks. North-Holland, Amsterdam (1982)]Google Scholar
  52. [52]
    Pieranski, P.: Colloidal crystals. Contemp. Phys. 24(1), 2573 (1983). DOI 10.1080/00107518308227471CrossRefGoogle Scholar
  53. [53]
    Pukhov, A.: Strong field interaction of laser radiation. Rep. Prog. Phys. 66(1), 47–101 (2003). DOI 10.1088/0034-4885/66/1/202CrossRefADSGoogle Scholar
  54. [54]
    Quintenz, J., Sandia’s Pulsed Power Team: Pulsed power team. In: Proc. 13thInt. Conf. on High Power Particle Beams. Nagaoka, Japan (2000)Google Scholar
  55. [55]
    Rubakov, V.A.: Large and infinite extra dimensions. Phys. Usp.44(9), 871 (2001). DOI 10.1070/PU2001v044n09ABEH001000. URL
  56. [56]
    Russel, W.B., Saville, D.A., Schowalter, W.R.: Colloidal Dispersions. Cambridge University Press, Cambridge (1989)Google Scholar
  57. [57]
    Ryutov, D.D., Remington, B.A., Robey, H.F., Drake, R.P.: Magnetodynamicscaling: from astrophysics to the laboratory. Phys. Plasmas 8(5), 1804–1816 (2001). DOI 10.1063/1.1344562CrossRefADSGoogle Scholar
  58. [58]
    Schatz, T., Schramm, U., Habs, D.: Crystalline ion beams. Nature 412(6848),717–720 (2001). DOI 10.1038/35089045CrossRefADSGoogle Scholar
  59. [59]
    Schramm, U., Schatz, T., Bussmann, M., Habs, D.: Cooling and heating ofcrystalline ion beams. J. Phys. B 36(3), 561–571 (2003). DOI 10.1088/0953-4075/36/3/314CrossRefADSGoogle Scholar
  60. [60]
    Sharkov, B.Y. (ed.): Yadernyi sintez s inertsionnym uderzhaniem (Inertial ConfinementNuclear Fusion). Fizmatlit, Moscow (2005)Google Scholar
  61. [61]
    Shashkin, A.A.: Metal–insulator transitions and the effects of electron–electron interactions in two-dimensional electron systems. Phys. Usp.48(2), 129 (2005). DOI 10.1070/PU2005v048n02ABEH001944. URL Scholar
  62. [62]
    Spielman, R.B., Deeney, C., Chandler, G.A., et al.: Tungsten wire-array Zpinchexperiments at 200 TW and 2 MJ. Phys. Plasmas 5(5), 2105–2111(1998). DOI 10.1063/1.872881CrossRefADSGoogle Scholar
  63. [63]
    Vacca, J.R. (ed.): The World’s 20 Greatest Unsolved Problems. Prentice HallPTR, Englewood Cliffs, NJ (2004)Google Scholar
  64. [64]
    Zel’dovich, Y.B., Raizer, Y.P.: Fizika udarnykh voln i vysokotemperaturnykhgidrodinamicheskikh yavlenii, 2nd edn. Nauka, Moscow (1966). [EnglishTransl.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena.Dover, Mineola, NY (2002)]Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Russian Academy of Sciences, Joint Institute for High TemperaturesMoscowRussia

Personalised recommendations