Skip to main content

A Secure and Efficient Authenticated Diffie–Hellman Protocol

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6391))

Abstract

The Exponential Challenge Response (XRC) and Dual Exponential Challenge Response (DCR) signature schemes are the building blocks of the HMQV protocol. We propose a complementary analysis of these schemes; on the basis of this analysis we show how impersonation and man in the middle attacks can be mounted against HMQV, when some session specific information leakages happen. We define the Full Exponential Challenge Response (FXRC) and Full Dual Exponential Challenge Response (FDCR) signature schemes; using these schemes we propose the Fully Hashed MQV protocol, which preserves the performance and security attributes of the (H)MQV protocols and resists the attacks we present.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Basin, D., Cremers, C.: From Dolev–Yao to Strong Adaptive Corruption: Analyzing Security in the Presence of Compromising Adversaries. Cryptology ePrint Archive, Report 2009/079 (2009)

    Google Scholar 

  2. Canetti, R., Krawczyk, H.: Analysis of Key–Exchange Protocols and Their Use for Building Secure Channels. Cryptology ePrint Archive, Report 2001/040 (2001)

    Google Scholar 

  3. Gopalakrishnan, K., Thériault, N., Yao, C.Z.: Solving Discrete Logarithms from Partial Knowledge of the Key. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 224–237. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  5. Krawczyk, H.: HMQV: A Hight Performance Secure Diffie–Hellman Protocol. Cryptology ePrint Archive, Report 2005/176 (2005)

    Google Scholar 

  6. LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger Security of Authenticated Key Exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 1–16. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Law, L., Menezes, A., Qu, M., Solinas, J., Vanstone, S.: An Efficient Protocol for Authenticated Key Agreement. Designs, Codes and Cryptography 28(2), 119–134 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Maurer, U.M., Wolf, S.: Diffie–Hellman Oracles. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 268–282. Springer, Heidelberg (1996)

    Google Scholar 

  9. Menezes, A.: Another Look at HMQV. Journal of Mathematical Cryptology 1, 148–175 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Menezes, A., Ustaoglu, B.: On the Importance of Public-Key Validation in the MQV and HMQV Key Agreement Protocols. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 133–147. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Okamoto, T., Pointcheval, D.: The Gap–Problems: A new class of problems for the security of cryptographic schemes. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 104–118. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  12. Pointcheval, D., Stern, J.: Security Arguments for Digital Signatures and Blind Signatures. Journal of Cryptology 13, 361–396 (2000)

    Article  MATH  Google Scholar 

  13. Pollard, J.M.: Kangaroos, Monopoly and Discrete Logarithms. Journal of Cryptology 13, 437–447 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sarr, A.P., Elbaz–Vincent, P., Bajard, J.C.: A Secure and Efficient Authenticated Diffie–Hellman Protocol. Cryptology ePrint Archive, Report 2009/408 (2009)

    Google Scholar 

  15. Teske, E.: Square-root Algorithms for the Discrete Logarithm Problem (A survey). In: Public Key Cryptography and Computational Number Theory, pp. 283–301. Walter de Gruyter, Berlin (2001)

    Google Scholar 

  16. Ustaoglu, B.: Obtaining a secure and efficient key agreement protocol from (H)MQV and NAXOS. Designs, Codes and Cryptography 46(3), 329–342 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sarr, A.P., Elbaz-Vincent, P., Bajard, JC. (2010). A Secure and Efficient Authenticated Diffie–Hellman Protocol. In: Martinelli, F., Preneel, B. (eds) Public Key Infrastructures, Services and Applications. EuroPKI 2009. Lecture Notes in Computer Science, vol 6391. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16441-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16441-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16440-8

  • Online ISBN: 978-3-642-16441-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics