Skip to main content

Resource Aware Distributed Knowledge Discovery

  • Chapter
Ubiquitous Knowledge Discovery

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6202))

  • 645 Accesses

Abstract

In the introduction it was argued that ubiquitous knowledge discovery systems have to be able to sense their environment and receive data from other devices, to adapt continuously to changing environmental conditions (including their own condition) and evolving user habits and need be capable of predictive self-diagnosis. In the last chapter, resource constraints arising from ubiquitous environments have been discussed in some detail. It has been argued that algorithms have to be resource-aware because of real-time constraints and of limited computing and battery power as well as communication resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbar, D.: Requirements for clustering data streams. SIGKDD Explorations 3(2), 23–27 (2002)

    Article  Google Scholar 

  2. Schapire, R.: Strength of weak learnability. Journal of Machine Learning 5, 197–227 (1990)

    Google Scholar 

  3. Oza, N.: Online Ensemble Learning. PhD thesis, University of California, Berkeley (2001)

    Google Scholar 

  4. Kargupta, H., Dutta, H.: Orthogonal Decision Trees. In: Proceedings of The Fourth IEEE International Conference on Data Mining (ICDM 2004), Brighton, UK (2004)

    Google Scholar 

  5. Davies, W., Edwards, P.: Agent-Based Knowledge Discovery. In: AAAI Spring Symposium on Information Gathering (1995)

    Google Scholar 

  6. Stolfo, S.J., Prodromidis, A.L., Tselepis, S., Lee, W., Fan, D.W., Chan, P.K.: JAM: Java agents for meta-learning over distributed databases. In: Knowledge Discovery and Data Mining, pp. 74–81 (1997)

    Google Scholar 

  7. Finin, T., Fritzson, R., McKay, D., McEntire, R.: KQML as an Agent Communication Language. In: Adam, N., Bhargava, B., Yesha, Y. (eds.) Proceedings of the 3rd International Conference on Information and Knowledge Management (CIKM 1994), Gaithersburg, MD, USA, pp. 456–463. ACM Press, New York (1994)

    Google Scholar 

  8. Genesereth, M.R., Fikes, R.E.: Knowledge Interchange Format, Version 3.0 Reference Manual. Technical Report Logic-92-1, Stanford University, Stanford, CA, USA (1992)

    Google Scholar 

  9. Martin, D., Cheyer, A., Moran, D.: The Open Agent Architecture: a framework for building distributed software systems. Applied Artificial Intelligence 13(1/2), 91–128 (1999)

    Article  Google Scholar 

  10. Park, B., Kargupta, H.: Distributed Data Mining: Algorithms, Systems and Applications. In: Data Mining Handbook. Lawrence Erlbaum Associates, Mahwah (2002)

    Google Scholar 

  11. Muthukrishnan, S.: Data streams: algorithms and applications. Now Publishers (2005)

    Google Scholar 

  12. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in data stream systems. In: Kolaitis, P.G. (ed.) Proceedings of the 21nd Symposium on Principles of Database Systems, pp. 1–16. ACM Press, New York (2002)

    Google Scholar 

  13. Datta, S., Bhaduri, K., Giannella, C., Wolff, R., Kargupta, H.: Distributed data mining in peer-to-peer networks. IEEE Internet Computing special issue on Distributed Data Mining 10(4), 18–26 (2006)

    Google Scholar 

  14. Younis, O., Fahmy, S.: Heed: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Transactions on Mobile Computing 3(4), 366–379 (2004)

    Article  Google Scholar 

  15. Cannataro, M., Talia, D., Trunfio, P.: Distributed data mining on the grid. Future Generation Computer Systems 18(8), 1101–1112 (2002)

    Article  MATH  Google Scholar 

  16. Cormode, G., Muthukrishnan, S., Zhuang, W.: Conquering the divide: Continuous clustering of distributed data streams. In: ICDE 2007, pp. 1036–1045 (2007)

    Google Scholar 

  17. Gama, J., Gaber, M.M. (eds.): Learning from Data Streams – Processing techniques in Sensor Networks. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  18. Gaber, M.M., Yu, P.S.: A framework for resource-aware knowledge discovery in data streams: a holistic approach with its application to clustering. In: ACM Symposium Applied Computing, pp. 649–656. ACM Press, New York (2006)

    Google Scholar 

  19. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  20. Vapnik, V.: The nature of statistical learning theory. Springer, Heidelberg (1995)

    Book  MATH  Google Scholar 

  21. Manku, G.S., Motwani, R.: Approximate frequency counts over data streams. In: Proceedings of the 28th International Conference on Very Large Data Bases (2002)

    Google Scholar 

  22. Cormode, G., Muthukrishnan, S.: An improved data stream summary: The count-min sketch and its applications. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 29–38. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  23. Domingos, P., Hulten, G.: Mining High-Speed Data Streams. In: Parsa, I., Ramakrishnan, R., Stolfo, S. (eds.) Proceedings of the ACM Sixth International Conference on Knowledge Discovery and Data Mining, pp. 71–80. ACM Press, New York (2000)

    Chapter  Google Scholar 

  24. Hulten, G., Domingos, P.: Catching up with the data: research issues in mining data streams. In: Proc. of Workshop on Research issues in Data Mining and Knowledge Discovery (2001)

    Google Scholar 

  25. Gama, J., Rocha, R., Medas, P.: Accurate decision trees for mining high-speed data streams. In: KDD 2003: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 523–528. ACM, New York (2003)

    Google Scholar 

  26. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In: Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 97–106. ACM Press, New York (2001)

    Google Scholar 

  27. Rodrigues, P.P., Gama, J., Pedroso, J.: Hierarchical clustering of time series data streams. IEEE Transactions on Knowledge and Data Engineering 20(5), 615–627 (2008)

    Article  Google Scholar 

  28. Bar-Or, A., Keren, D., Schuster, A., Wolff, R.: Hierarchical decision tree induction in distributed genomic databases. IEEE Transactions on Knowledge and Data Engineering 17(8), 1138–1151 (2005)

    Article  Google Scholar 

  29. Kifer, D., Ben-David, S., Gehrke, J.: Detecting change in data streams. In: VLDB 2004: Proceedings of the 30th International Conference on Very Large Data Bases, pp. 180–191. Morgan Kaufmann Publishers Inc., San Francisco (2004)

    Chapter  Google Scholar 

  30. Cauwenberghs, G., Poggio, T.: Incremental and decremental support vector machine learning. In: Proceedings of the 13th Neural Information Processing Systems (2000)

    Google Scholar 

  31. Castillo, G., Gama, J.: An adaptive prequential learning framework for Bayesian network classifiers. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 67–78. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  32. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 286–295. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  33. Spinosa, E., Gama, J., Carvalho, A.: Cluster-based novel concept detection in data streams applied to intrusion detection in computer networks. In: Proceedings of the 2008 ACM Symposium on Applied Computing. ACM Press, New York (2008)

    Google Scholar 

  34. Barbara, D., Chen, P.: Using the fractal dimension to cluster datasets. In: Proc. of the 6th International Conference on Knowledge Discovery and Data Mining, pp. 260–264. ACM Press, New York (2000)

    Google Scholar 

  35. Kargupta, H., Sivakumar, K.: Existential Pleasures of Distributed Data Mining. In: Data Mining: Next Generation Challenges and Future Directions. AAAI/MIT Press (2004)

    Google Scholar 

  36. Aggarwal, C. (ed.): Data Streams – Models and Algorithms. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  37. Wald, A.: Sequential Analysis. John Wiley and Sons, Inc., Chichester (1947)

    MATH  Google Scholar 

  38. Brain, D., Webb, G.: The need for low bias algorithms in classification learning from large data sets. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS (LNAI), vol. 2431, pp. 62–73. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gama, J., Cornuéjols, A. (2010). Resource Aware Distributed Knowledge Discovery. In: May, M., Saitta, L. (eds) Ubiquitous Knowledge Discovery. Lecture Notes in Computer Science(), vol 6202. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16392-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16392-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16391-3

  • Online ISBN: 978-3-642-16392-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics