Skip to main content

Optimal Testing of Reed-Muller Codes

  • Chapter
Property Testing

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6390))

  • 1099 Accesses

Abstract

We consider the problem of testing if a given function \(f : \mathbb{F}_2^n \rightarrow \mathbb{F}_2\) is close to any degree d polynomial in n variables, also known as the problem of testing Reed-Muller codes. We are interested in determining the query-complexity of distinguishing with constant probablity between the case where f is a degree d polynomial and the case where f is Ω(1)-far from all degree d polynomials. Alon et al. [AKK+05] proposed and analyzed a natural 2d + 1-query test T 0, and showed that it accepts every degree d polynomial with probability 1, while rejecting functions that are Ω(1)-far with probability Ω(1/(d 2d)). This leads to a O(d 4d)-query test for degree d Reed-Muller codes.

We give an asymptotically optimal analysis of T 0, showing that it rejects functions that are Ω(1)-far with Ω(1)-probability (so the rejection probability is a universal constant independent of d and n). In particular, this implies that the query complexity of testing degree d Reed-Muller codes is O(2d).

Our proof works by induction on n, and yields a new analysis of even the classical Blum-Luby-Rubinfeld [BLR93] linearity test, for the setting of functions mapping \(\mathbb{F}_2^n\) to \(\mathbb{F}_2\). Our results also imply a “query hierarchy” result for property testing of affine-invariant properties: For every function q(n), it gives an affine-invariant property that is testable with O(q(n))-queries, but not with o(q(n))-queries, complementing an analogous result of [GKNR08] for graph properties.

This is a brief overview of the results in the paper [BKS+09].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Beigel, R.: Lower bounds for approximations by low degree polynomials over Z m . In: IEEE Conference on Computational Complexity, pp. 184–187 (2001)

    Google Scholar 

  2. Alon, N., Kaufman, T., Krivelevich, M., Litsyn, S., Ron, D.: Testing Reed-Muller codes. IEEE Transactions on Information Theory 51(11), 4032–4039 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bellare, M., Coppersmith, D., Håstad, J., Kiwi, M., Sudan, M.: Linearity testing over characteristic two. IEEE Transactions on Information Theory 42(6), 1781–1795 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brown, M.V., Calkin, N.J., James, K., King, A.J., Lockard, S., Rhoades, R.C.: Trivial Selmer groups and even partitions of a graph. INTEGERS 6 (December 2006)

    Google Scholar 

  5. Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time has two-prover interactive protocols. Computational Complexity 1(1), 3–40 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in polylogarithmic time. In: Proceedings of the 23rd ACM Symposium on the Theory of Computing, pp. 21–32. ACM Press, New York (1991)

    Google Scholar 

  7. Bhattacharyya, A., Kopparty, S., Schoenebeck, G., Sudan, M., Zuckerman, D.: Optimal testing of Reed-Muller codes. ECCC Technical Report, TR09-086 (October 2009)

    Google Scholar 

  8. Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to numerical problems. J. Comp. Sys. Sci. 47, 549–595 (1993); Earlier version in STOC 1990 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brent, R.P., McKay, B.D.: On determinants of random symmetric matrices over ℤ m . ARS Combinatoria 26A, 57–64 (1988)

    MathSciNet  MATH  Google Scholar 

  10. Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Interactive proofs and the hardness of approximating cliques. Journal of the ACM 43(2), 268–292 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and approximation. Journal of the ACM 45, 653–750 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goldreich, O., Krivelevich, M., Newman, I., Rozenberg, E.: Hierarchy theorems for property testing. Electronic Colloquium on Computational Complexity (ECCC) 15(097) (2008)

    Google Scholar 

  13. Gowers, W.T.: A new proof of Szeméredi’s theorem for arithmetic progressions of length four. Geometric Functional Analysis 8(3), 529–551 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gowers, W.T.: A new proof of Szeméredi’s theorem. Geometric Functional Analysis 11(3), 465–588 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Green, B., Tao, T.: An inverse theorem for the Gowers U3 norm. arXiv.org:math/0503014 (2005)

    Google Scholar 

  16. Green, B., Tao, T.: The distribution of polynomials over finite fields, i with applications to the Gowers norms. Technical report (November 2007), http://arxiv.org/abs/0711.3191v1

  17. Kaufman, T., Sudan, M.: Algebraic property testing: the role of invariance. In: STOC 2008: Proceedings of the 40th annual ACM symposium on Theory of computing, pp. 403–412. ACM, New York (2008)

    Google Scholar 

  18. Lovett, S., Meshulam, R., Samorodnitsky, A.: Inverse conjecture for the Gowers norm is false. In: Ladner, R.E., Dwork, C. (eds.) STOC, pp. 547–556. ACM, New York (2008)

    Google Scholar 

  19. Rubinfeld, R., Sudan, M.: Robust characterizations of polynomials with applications to program testing. SIAM J. on Comput. 25, 252–271 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Viola, E., Wigderson, A.: Norms, XOR lemmas, and lower bounds for GF(2) polynomials and multiparty protocols. In: Twenty-Second Annual IEEE Conference on Computational Complexity, CCC 2007, pp. 141–154 (June 2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bhattacharyya, A., Kopparty, S., Schoenebeck, G., Sudan, M., Zuckerman, D. (2010). Optimal Testing of Reed-Muller Codes. In: Goldreich, O. (eds) Property Testing. Lecture Notes in Computer Science, vol 6390. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16367-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16367-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16366-1

  • Online ISBN: 978-3-642-16367-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics