Advertisement

Towards a Maintenance and Servicing Indicator

  • Pascal Vrignat
  • Manuel Avila
  • Florent Duculty
  • Frédéric Kratz
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 338)

Abstract

This paper deals with a tool which may help maintenance manager to schedule maintenance activities. To help him, we show that by using events which can be observed on a process, like maintenance events, we can predict failures before they occur. Principles are based on the hypothesis that failure is preceded by a typical sequence of events. We also show that Hidden Markov Models can be used according to a good choice of parameters.

Keywords

Preventive Maintenance Maintenance planning Hidden Markov Model Failure detection 

References

  1. 1.
    Vrignat, P., Avila, M., Duculty, F., Kratz, F.: Conventional approaches to the modelling of a dysfunctional process in the context of maintenance activity. IEEE Melecon Region 8, t1-sf0008 (2008)Google Scholar
  2. 2.
    Zille, V., Bérenguer, C., Grall, A.: Modelling and simulation of complex maintenance strategies for multi-component systems. Maintenance and Facility Management (2007)Google Scholar
  3. 3.
    Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proceeding of the IEEE 77(2), 257–286 (1989)CrossRefGoogle Scholar
  4. 4.
    Baum, L.E., Petrie, T.: Statistical inference for probabilistic functions of Markov chains. Annals Math. Stat. 37, 1554–1563 (1966)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Baum, L.E.: An inequality and associated maximisation technique in statistical estimation for probabilistic functions. Inequalities 3, 1–8 (1972)Google Scholar
  6. 6.
    Viterbi, A.J.: Error bounds for conventionnal codes and asymptotically optimum decoding algorithm. IEEE Trans. on Information Theory 13, 260–269 (1967)zbMATHCrossRefGoogle Scholar
  7. 7.
    Doss, M.M.: Using Auxiliary Sources of Knowledge for Automatic Speech Recognition, Thèse de doctorat, Ecole Polytechnique Fédérale, Lausanne (2005)Google Scholar
  8. 8.
    Grundy, W.N., Bailey, T.L., Baker, M.E.: Meta-MEME: Motif-based Hidden Markov Models of protein families. Computer Applications in the Biosciences 13(4), 397 (1997)Google Scholar
  9. 9.
    Schbath, S.: Les chaînes de Markov cachées: présentation et usage en analyse de séquences bioliques. In: Unité Mathématique, Informatique & Génome, INRA (2007)Google Scholar
  10. 10.
    Hugues, J.P., Guttorp, P.: A hidden Markov model for downscalling synoptic atmospheric patterns to precipitation amounts. Climate Research 15(1), 1 (2000)Google Scholar
  11. 11.
    Avila, M.: Optimisation de modèles Markoviens pour la reconnaissance de l’écrit, Thèse de doctorat, Université, Rouen (1996)Google Scholar
  12. 12.
    Belaïd, A., Anigbogu, J.: Hidden Markov Models in Text Recognition. International Journal of Pattern Recognition 9(6) (1995)Google Scholar
  13. 13.
    Schalapbach, A., Bunke, H.: Using HMM-based recognizers for writer identification and verification. In: Proc. 9th Int. Workshop on Frontiers in Handwriting Recognition, pp. 167–172 (2004)Google Scholar
  14. 14.
    Vialatte, F.B.: Aide au diagnostic d’anomalies cardiaques, mémoire de DEA de Sciences Cognitives, Paris VI, Paris (2002)Google Scholar
  15. 15.
    Rabiner, L.R., Juang, B.H., Levinson, S.E., Sondhi, M.M.: Recognition of isolated digits using hidden Markov models with continuous mixture densities. AT&T Technical Journal 64, 1211–1222 (1986)MathSciNetGoogle Scholar
  16. 16.
    Brouard, T.: Hybridation de Chaînes de Markov Cachées: conception d’algorithmes d’apprentissage et applications, Thèse de doctorat, Université François Rabelais, Tours (1999)Google Scholar
  17. 17.
    Vrignat, P., Avila, M., Duculty, F., Kratz, F.: Modélisation des dysfonctionnements d’un système dans le cadre d’activités de maintenance. Communication 4A-1, lm16 (2008)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2010

Authors and Affiliations

  • Pascal Vrignat
    • 1
  • Manuel Avila
    • 1
  • Florent Duculty
    • 1
  • Frédéric Kratz
    • 2
  1. 1.Institut PRISME, IUT IndreOrleans UniversityChâteaurouxFrance
  2. 2.ENSIBInstitut PRISMEBourgesFrance

Personalised recommendations