Skip to main content

Using Cohesive Subgroups for Analyzing the Evolution of the Friend View Mobile Social Network

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6406))

Abstract

The mobility of users and the ubiquity of the mobile phone and Internet are leading to the development of mobile social networks. Much work has been done on modeling the evolution of online social networks using mathematical, social network analysis, and graph theoretic methods, however few using cohesive subgroups and similarity. In this paper, we present a study of the evolution of the Nokia Friend View mobile social network using network and usage statistics, and use the DISSECT method [7] for characterizing this evolution through the movement of cohesive subgroups. We discover that the friend network becomes less dense and less clustered (with fewer subgroups) over time, and the DISSECT method [7] helped to identify these cohesive subgroups and accurately predicted its most active users. We visualized these cohesive subgroups and modeled the evolution using persistence of subgroups. These results point the way towards an analytical framework for comparing mobile social networks which may help facilitate development of new recommender applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Backstrom, L., Huttenlocher, D., Kleinberg, J., Lan, X.: Group formation in large social networks: membership, growth, and evolution. In: ACM SIGKDD, pp. 44–54. ACM, New York (2006)

    Google Scholar 

  2. Balasundaram, B., Butenko, S., Hicks, I., Sachdeva, S.: Clique relaxations in social network analysis: The maximum k-plex problem. Tech. rep., Texas A and M Engineering (2008)

    Google Scholar 

  3. Barabasi, A., Jeong, H., Neda, Z., Ravasz, E., Schubert, A., Vicsek, T.: Evolution of the social network of scientific collaborations. Physica A: Statistical Mechanics and its Applications 311(3-4), 590–614 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. In: WWW 1998, pp. 107–117 (1998)

    Google Scholar 

  5. Chakrabarti, D., Kumar, R., Tomkins, A.: Evolutionary clustering. In: Proceedings of the 12th ACM SIGKDD, pp. 554–560 (2006)

    Google Scholar 

  6. Chin, A., Chignell, M.: Automatic detection of cohesive subgroups within social hypertext: A heuristic approach. New Review of Hypermedia and Multimedia 14(1), 121–143 (2008)

    Article  Google Scholar 

  7. Chin, A., Chignell, M.: DISSECT: Data-Intensive Socially Similar Evolving Community Tracker. Computational Social Network Analysis, 81–105

    Google Scholar 

  8. Chin, A., Chignell, M.: Identifying subcommunities using cohesive subgroups in social hypertext. In: HT 2007, pp. 175–178. ACM, New York (2007)

    Google Scholar 

  9. Chun, H., Kwak, H., Eom, Y., Ahn, Y., Moon, S., Jeong, H.: Comparison of online social relations in volume vs interaction: a case study of cyworld. In: Proc. of the 8th ACM SIGCOMM IMC Conference, pp. 57–70. ACM, New York (2008)

    Google Scholar 

  10. Clauset, A.: Finding local community structure in networks. Physical review E 72(2), 26132 (2005)

    Article  Google Scholar 

  11. Cortes, C., Pregibon, D., Volinsky, C.: Communities of interest. Intelligent Data Analysis 6(3), 211–219 (2002)

    MATH  Google Scholar 

  12. Donetti, L., Munoz, M.: Detecting network communities: a new systematic and efficient algorithm. Journal of Statistical Mechanics: Theory and Experiment, P10012 (2004)

    Google Scholar 

  13. Du, N., Wu, B., Pei, X., Wang, B., Xu, L.: Community detection in large-scale social networks. In: 1st SNA-KDD, pp. 16–25. ACM, New York (2007)

    Google Scholar 

  14. Fisher, D.: Using egocentric networks to understand communication. IEEE Internet Computing 9(5), 20–28 (2005)

    Article  Google Scholar 

  15. Fortunato, S., Latora, V., Marchiori, M.: Method to find community structures based on information centrality. Physical review E 70(5), 56104 (2004)

    Article  Google Scholar 

  16. Freeman, L.: Centrality in social networks conceptual clarification. Social networks 1(3), 215–239 (1979)

    Article  Google Scholar 

  17. Hu, H., Wang, X.: Evolution of a large online social network. Physics Letters A 373(12-13), 1105–1110 (2009)

    Article  Google Scholar 

  18. Java, A., Song, X., Finin, T., Tseng, B.: Why we twitter: understanding microblogging usage and communities. In: 1st SNA-KDD, pp. 56–65. ACM, New York (2007)

    Google Scholar 

  19. Kleinberg, J.: Authoritative sources in a hyperlinked environment. Journal of the ACM (JACM) 46(5), 604–632 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kleinberg, J.: Bursty and hierarchical structure in streams. Data Mining and Knowledge Discovery 7(4), 373–397 (2003)

    Article  MathSciNet  Google Scholar 

  21. Kumar, R., Novak, J., Raghavan, P., Tomkins, A.: Structure and evolution of blogspace. Communications of the ACM 47(12), 35–39 (2004)

    Article  Google Scholar 

  22. Kumar, R., Novak, J., Tomkins, A.: Structure and evolution of online social networks. In: Proceedings of the 12th ACM SIGKDD, pp. 611–617. ACM, New York (2006)

    Google Scholar 

  23. Kurdia, A., Daescu, O., Ammann, L., Kakhniashvili, D., Goodman, S.: Centrality measures for the human red blood cell interactome. In: Engineering in Medicine and Biology Workshop, pp. 98–101. IEEE, Los Alamitos (2007)

    Google Scholar 

  24. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: Densification and shrinking diameters. ACM Transactions on Knowledge Discovery from Data (TKDD) 1(1), 2 (2007)

    Article  Google Scholar 

  25. Leydesdorff, L., Schank, T., Scharnhorst, A., De Nooy, W.: Animating the development of Social Networks over time using a dynamic extension of multidimensional scaling (2008), http://arxiv.org/pdf/0809.4655

  26. Li, N., Chen, G.: Analysis of a Location-Based Social Network. In: Proceedings of the Intern. Confer. on Computational Science and Engineering, pp. 263–270. IEEE, Los Alamitos (2009)

    Google Scholar 

  27. Lin, Y., Chi, Y., Zhu, S., Sundaram, H., Tseng, B.: Facetnet: a framework for analyzing communities and their evolutions in dynamic networks. In: WWW 2008, pp. 685–694. ACM, New York (2008)

    Google Scholar 

  28. Ma, H., Zeng, A.: The connectivity structure, giant strong component and centrality of metabolic networks. Bioinformatics 19(11), 1423–1430 (2003)

    Article  Google Scholar 

  29. Memon, N., Larsen, H., Hicks, D., Harkiolakis, N.: Detecting hidden hierarchy in terrorist networks: Some case studies. In: Yang, C.C., Chen, H., Chau, M., Chang, K., Lang, S.-D., Chen, P.S., Hsieh, R., Zeng, D., Wang, F.-Y., Carley, K.M., Mao, W., Zhan, J. (eds.) ISI Workshops 2008. LNCS, vol. 5075, pp. 477–489. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  30. Moody, J., McFarland, D., Bender deMoll, S.: Dynamic network visualization1. American Journal of Sociology 110(4), 1206–1208 (2005)

    Article  Google Scholar 

  31. Newman, M., Girvan, M.: Finding and evaluating community structure in networks. Physical Review E 69(2), 26113 (2004)

    Article  Google Scholar 

  32. Palla, G., Barabási, A., Vicsek, T.: Quantifying social group evolution. Nature 446(7136), 664–667 (2007)

    Article  Google Scholar 

  33. Piper, W., Marrache, M., Lacroix, R., Richardsen, A., Jones, B.: Cohesion as a basic bond in groups. Human Relations 36(2), 93 (1983)

    Article  Google Scholar 

  34. Ruan, J., Zhang, W.: An efficient spectral algorithm for network community discovery and its applications to biological and social networks. In: Proceedings of the 2007 Seventh IEEE International Conference on Data Mining 2007, pp. 643–648 (2007)

    Google Scholar 

  35. Snijders, T., Steglich, C., Schweinberger, M.: Modeling the co-evolution of networks and behavior. Longitudinal Models in the Behavioral and Related Sciences, 41–71 (2007)

    Google Scholar 

  36. Sun, J., Faloutsos, C., Papadimitriou, S., Yu, P.: Graphscope: parameter-free mining of large time-evolving graphs. In: Proceedings of the 13th ACM SIGKDD, pp. 687–696. ACM, New York (2007)

    Google Scholar 

  37. Tang, L., Liu, H., Zhang, J., Nazeri, Z.: Community evolution in dynamic multi-mode networks. In: 14th ACM SIGKDD, pp. 677–685 (2008)

    Google Scholar 

  38. Tyler, J., Wilkinson, D., Huberman, B.: E-mail as spectroscopy: Automated discovery of community structure within organizations. The Information Society 21(2), 143–153 (2005)

    Article  Google Scholar 

  39. Wang, G., Shen, Y., Ouyang, M.: A vector partitioning approach to detecting community structure in complex networks. Computers & Mathematics with Applications 55(12), 2746–2752 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wellman, B.: Structural analysis: From method and metaphor to theory and substance. Contemporary Studies in Sociology 15, 19–61 (1997)

    Google Scholar 

  41. Welser, H., Gleave, E., Fisher, D., Smith, M.: Visualizing the signatures of social roles in online discussion groups. Journal of Social Structure 8(2) (2007), http://www.cmu.edu/joss/content/articles/volume8/Welser/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chin, A., Wang, H. (2010). Using Cohesive Subgroups for Analyzing the Evolution of the Friend View Mobile Social Network. In: Yu, Z., Liscano, R., Chen, G., Zhang, D., Zhou, X. (eds) Ubiquitous Intelligence and Computing. UIC 2010. Lecture Notes in Computer Science, vol 6406. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16355-5_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16355-5_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16354-8

  • Online ISBN: 978-3-642-16355-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics