Skip to main content

Experimental Designs and ANOVA for Microarray Data

  • Chapter
  • First Online:
Book cover Handbook of Statistical Bioinformatics

Part of the book series: Springer Handbooks of Computational Statistics ((SHCS))

Abstract

Microarray experiments are complex, multistep processes that represent a considerable investment of time and resources. Proper experimental design and analysis are critical to the success of a microarray experiment, and must be considered early in the planning of the experiment. Many aspects of experimental design from low-throughput experiments, such as randomization, replication, and blocking, remain applicable to microarray experiments as well. Similarly, the analysis of variance (ANOVA) remains a valid approach for analyzing data from most microarray experiments. However, the high-dimensional nature of microarrays introduces additional considerations into the design and analysis. This chapter provides an overview of the unique statistical challenges presented by microarrays and describes computational methods for implementing these statistical algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altman, N. S., & Hua, J. (2006). Extending the loop design for two-channel microarray experiments. Genetical Research, 88, 153–163.

    Article  Google Scholar 

  2. Bailey, R. A. (2007). Designs for two-colour microarray experiments. Applied Statistics, 56(4), 365–394.

    MathSciNet  Google Scholar 

  3. Baldi, P., & Long, A. D. (2001). A Bayesian framework for the analysis of microarray expression data: Regularized t-test and statistical inferences of gene changes. Bioinformatics, 17(6), 509–519.

    Article  Google Scholar 

  4. Bar-Joseph, Z. (2004). Analyzing time series gene expression data. Bioinformatics, 20, 2493–2503.

    Article  Google Scholar 

  5. Buck, M. J., & Lieb, J. D. (2004). Chip-chip: Considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics, 83, 349–360.

    Article  Google Scholar 

  6. Bueno Filho, J. S., Gilmour, S. G., & Rosa, G. J. (2006). Design of microarray experiments for genetical genomics studies. Genetics, 174, 945–957.

    Article  Google Scholar 

  7. Chai F.-S., Liao C.-T., & Tsai S.-F. (2007). Statistical designs for two-color spotted microarray experiments. Biometrical Journal, 49(2), 259–271.

    Article  MathSciNet  Google Scholar 

  8. Churchill, G. A. (2002). Fundamentals of experimental design for cDNA microarrays. Nature Genetics, 32 Suppl, 490–495.

    Google Scholar 

  9. Cox, D. R. (1958). Planning of experiments. New York: Wiley.

    MATH  Google Scholar 

  10. Cui, X., & Churchill, G. A. (2003). How many mice and how many arrays? replication of cDNA microarray experiments. In M. L. Simon & T. A. Emily (Eds.), Methods of microarray data analysis III. New York: Kluwer Academic Publishers.

    Google Scholar 

  11. Cui, X., & Churchill, G. A. (2003). Statistical tests for differential expression in cDNA microarray experiments. Genome Biology, 4(4), 210.

    Article  Google Scholar 

  12. Cui, X., Hwang, J. T., Qiu, J., Blades, N. J., & Churchill, G. A. (2005). Improved statistical tests for differential gene expression by shrinking variance components estimates. Biostatistics, 6(1), 59–75.

    Article  MATH  Google Scholar 

  13. de Koning, D. J., & Haley, C. S. (2005). Genetical genomics in humans and model organisms. Trends in Genetics, 21, 377–381.

    Article  Google Scholar 

  14. Dobbin, K., Shih, J. H., & Simon, R. (2003). Statistical design of reverse dye microarrays. Bioinformatics, 19(7), 803–810.

    Article  Google Scholar 

  15. Dobbin, K., & Simon, R. (2002). Comparison of microarray designs for class comparison and class discovery. Bioinformatics, 18, 1438–1445.

    Article  Google Scholar 

  16. Dobbin, K. K., Kawasaki, E. S., Petersen, D. W., & Simon, R. M. (2005). Characterizing dye bias in microarray experiments. Bioinformatics, 21, 2430–2437.

    Article  Google Scholar 

  17. Efron, B., Tibshirani, R., Storey, J. D., & Tusher, V. (2001). Empirical Bayes analysis of a microarray experiment. Journal of American Statistical Association, 96(456), 1151–1160.

    Article  MathSciNet  MATH  Google Scholar 

  18. Fan, J., Chen, Y., Chan, H. M., Tam, P. K. H., & Ren, Y. (2005). Removing intensity effects and identifying significant genes for affymetrix arrays in macrophage migration inhibitory factor-suppressed neuroblastoma cells. Proceedings of the National Academy of Sciences of the United States of America, 102(49), 17,751–17,756.

    Google Scholar 

  19. Firestein, G. S., & Pisetsky, D. S. (2002). DNA microarrays: Boundless technology or bound by technology? Guidelines for studies using microarray technology. Arthritis & Rheumatism, 46(4), 859–861.

    Article  Google Scholar 

  20. Fisher, R. A. (1926). The arrangement of field experiments. Journal of the Ministry of Agriculture of Great Britain, 33, 503–513.

    Google Scholar 

  21. Fisher, R. A. (1935). The design of experiments. Edinburgh: Oliver and Boyd.

    Google Scholar 

  22. Fu, J., & Jansen, R. C. (2006). Optimal design and analysis of genetic studies on gene expression. Genetics, 172, 1993–1999.

    Article  Google Scholar 

  23. Gibson, G., & Weir, B. (2005). The quantitative genetics of transcription. Genetics, 21, 616–623.

    Google Scholar 

  24. Jafari, P., & Azuaje, F. (2006). An assessment of recently published gene expression data analyses: Reporting experimental design and statistical factors. BMC Medical Informatics and Decision Making, 6, 27.

    Article  Google Scholar 

  25. Kendziorski, C. M., Irizarry, R. A., Chen, K. S., Haag, J. D., & Gould, M. N. (2005). On the utility of pooling biological samples in microarray experiments. Proceedings of the National Academy of Sciences of the United of States America, 102, 4252–4257.

    Article  Google Scholar 

  26. Kendziorski, C. M., Newton, M. A., Lan, H., & Gould, M. N. (2003). On parametric empirical Bayes methods for comparing multiple groups using replicated gene expression profiles. Statistics in Medicine, 22(24), 3899–3914.

    Article  Google Scholar 

  27. Kendziorski, C. M., Zhang, Y., Lan, H., & Attie, A. D. (2003). The efficiency of pooling mRNA in microarray experiments. Biostatistics, 4, 465–477.

    Article  MATH  Google Scholar 

  28. Kennedy, W. J, & Gentle, J. E. (1980). Statistical computing. New York: Marcel Dekker.

    MATH  Google Scholar 

  29. Kerr, M. K. (2003). Design considerations for efficient and effective microarray studies. Biometrics, 59, 822–828.

    Article  MathSciNet  MATH  Google Scholar 

  30. Kerr, M. K., & Churchill, G. A. (2001). Experimental design for gene expression microarrays. Biostatistics, 2, 183–201.

    Article  MATH  Google Scholar 

  31. Kerr, M. K., & Churchill, G. A. (2001). Statistical design and the analysis of gene expression microarray data. Genetical Research, 77(2), 123–128.

    Google Scholar 

  32. Khanin, R., & Wit, E. (2005). Design of large time-course microarray experiments with two channels. Applied Bioinformatics, 4, 253–261.

    Article  Google Scholar 

  33. Kuehl, R. O. (2000). Design of experiments: Statistical principles of research design and analysis. New York: Duxbury Press.

    Google Scholar 

  34. Lonnstedt, I., & Speed, T. (2002). Replicated microarray data. Statistica Sinica, 12, 31–46.

    MathSciNet  Google Scholar 

  35. Monahan, J. F. (2001). Numerical methods of statistics. New York: Cambridge.

    Book  MATH  Google Scholar 

  36. Newton, M. A., Kendziorski, C. M., Richmond, C. S., Blattner, F. R., & Tsui, K. W. (2001). On differential variability of expression ratios: Improving statistical inference about gene expression changes from microarray data. Journal of Computational Biology, 8(1), 37–52.

    Article  Google Scholar 

  37. Nguyen N.-K., & Williams, E. R. (2006). Experimental designs for 2-colour cDNA microarray experiments. Applied Stochastic Models in Business and Industry, 22, 631–638.

    Article  MathSciNet  MATH  Google Scholar 

  38. Ponzielli, R., Boutros, P. C., Katz, S., Stojanova, A., Hanley, A. P., Khosravi, F., Bros, C., Jurisica, I., & Penn, L. Z. (2008). Optimization of experimental design parameters for high–throughput chromatin immunoprecipitation studies. Nucleic Acids Research, 36, e144.

    Article  Google Scholar 

  39. Quackenbush, J. (2006). Microarray analysis and tumor classification. New England Journal of Medicine, 354, 2463–2472.

    Article  Google Scholar 

  40. Segal, M. R., Dahlquist, K. D., & Conklin, B. R. (2003). Regression approaches for microarray data analysis. Journal of Computational Biology, 10, 961–980.

    Article  Google Scholar 

  41. Shih, J. H., Michalowska, A. M., Dobbin, K., Ye, Y., Qiu, T. H., & Green, J. E. (2004). Effects of pooling mRNA in microarray class comparisons. Bioinformatics, 20, 3318–3325.

    Article  Google Scholar 

  42. Simon, R. (2003). Diagnostic and prognostic prediction using gene expression profiles in high-dimensional microarray data. British Journal of Cancer, 89, 1599–1604.

    Article  Google Scholar 

  43. Smyth, G. K. (2004). Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology, 3, Article3.

    Google Scholar 

  44. Smyth, G. K. (2005). Limma: Linear models for microarray data. In R. Gentleman, V. Carey, S. Dudoit, R. Irizarry, & W. Huber (Eds.), Bioinformatics and computational biology solutions using R and bioconductor (pp. 397–420). New York: Springer.

    Chapter  Google Scholar 

  45. Steibel, J. P., & Rosa, G. J. (2005). On reference designs for microarray experiments. Statistical Applications in Genetics and Molecular Biology, 4, Article36.

    Google Scholar 

  46. Storey, J. D., & Tibshirani, R. (2003). SAM thresholding and false discovery rates for detecting differential gene expression in DNA microarrays. In G. Parmigiani, E. S. Garret, R. Irizarry, & S. Zeger (Eds.), The analysis of gene expression data: An overview of methods and software (pp. 272–290). New York: Springer.

    Chapter  Google Scholar 

  47. Tusher, V. G., Tibshirani, R., & Chu, G. (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences of the United States of America, 98, 5116–5121.

    Article  MATH  Google Scholar 

  48. Wit, E., Nobile, A., & Khanin, R. (2005). Near-optimal designs for dual channel microarray studies. Applied Statistics, 54, 817–830.

    MathSciNet  MATH  Google Scholar 

  49. Wright, G. W., & Simon, R. M. (2003). A random variance model for detection of differential gene expression in small microarray experiments. Bioinformatics, 19(18), 2448–2455.

    Article  Google Scholar 

  50. Xie, Y., Pan, W., & Khodursky, A. B. (2005). A note on using permutation-based false discovery rate estimates to compare different analysis methods for microarray data. Bioinformatics, 21(23), 4280–4288.

    Article  Google Scholar 

  51. Yang, H., & Churchill, G. A. (2007). Estimating p-values in small microarray experiments. Bioinformatics, 23(1), 38–43.

    Article  Google Scholar 

  52. Yang, I. V., Chen, E., Hasseman, J. P., Liang, W., Frank, B. C., Wang, S., Sharov, V., Saeed, A. I., White, J., Li, J., Lee, N. H., Yeatman, T. J., & Quackenbush, J. (2002). Within the fold: Assessing differential expression measures and reproducibility in microarray assays. Genome Biology, 3(11), research0062.

    Google Scholar 

  53. Yang, Y. H., & Speed, T. (2002). Design issues for cDNA microarray experiments. Nature Reviews. Genetics, 3(8), 579–588.

    Google Scholar 

  54. Yates, F. (1936). Incomplete randomized blocks. Annals of Eugenics, 7, 121–140.

    Article  Google Scholar 

  55. Yates, F. (1936). A new method of arranging variety trials involving a large number of varieties. Journal of Agricultural Science, 26, 424–455.

    Article  Google Scholar 

  56. Zakharkin, S. O., Kim, K., Mehta, T., Chen, L., Barnes, S., Scheirer, K. E., Parrish, R. S., Allison, D. B., & Page, G. P. (2005). Sources of variation in Affymetrix microarray experiments. BMC Bioinformatics, 6, 214.

    Article  Google Scholar 

  57. Zhang, W., Carriquiry, A., Nettleton, D., & Dekkers, J. C. (2007). Pooling mRNA in microarray experiments and its effect on power. Bioinformatics, 23, 1217–1224.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangqin Cui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kennedy, R.E., Cui, X. (2011). Experimental Designs and ANOVA for Microarray Data. In: Lu, HS., Schölkopf, B., Zhao, H. (eds) Handbook of Statistical Bioinformatics. Springer Handbooks of Computational Statistics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16345-6_8

Download citation

Publish with us

Policies and ethics