Skip to main content

Theoretical Studies on the Proton Transfer through Water Bridges in Hydrated Glycine Cluster

  • Conference paper
Information Computing and Applications (ICICA 2010)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 106))

Included in the following conference series:

  • 1523 Accesses

Abstract

DFT at the level of B3LYP/6-31++g** was employed to theoretically investigate the intramolecular proton transfer through water bridge chain from carbonyl to amino in glycine cluster, which results in the transformation of neutral glycine hydrate (nW-GN) into zwitterion (nW-GZ). The number of water molecules plays an important role in the proton transfer through water bridge chain. When the number of water molecules in water bridge chain is less than 5, the proton transfer through water bridge chain will complete cooperatively in one step, otherwise the proton transfer will complete in two steps via an intermediate. With the increase of water molecule chain increasing the stability of nW-GZ increases faster than that of nW-GN, the tendency of the transformation of nW-GN into nW-GZ increases, and the damage on the covalent bonded to the transferring proton increases. The increase of water molecule chain is not in favor of the proton transfer dynamically, but is in favor of proton transfer thermally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aikens, C.M., Gordon, M.S.: Incremental solvation of nonionized and zwitterionic glycine. J. Am. Chem. Soc. 128, 12835–12850 (2006)

    Article  Google Scholar 

  2. Ding, Y., Krogh-Jespersen, K.: The 1:1 glycine zwitterion-water complex: An ab initio electronic structure study. J. Comput. Chem. 17, 338–349 (1996)

    Article  Google Scholar 

  3. Ke, H.W., Rao, L., Xu, X., Yan, Y.: Density functional theory study of 1:1 glycinë Cwater complexes in the gas phase and in solution. J. Science. China. Chem. 2, 383–395 (2010)

    Article  Google Scholar 

  4. Xu, S.J., Nilles, J.M., Bowen, K.H.: Zwitterion formation in hydrated amino acid, dipole bound anions: How many water molecules are required. J. Chem. Phys. 119, 10696–10701 (2003)

    Article  Google Scholar 

  5. Twari, S., Mishra, P.C., Suhai, S.: Solvent effect of aqueous media on properties of glycine: significance of specific and bulk solvent effects and geometry optimization in aqueous media. Int. J. Quantum. Chem. 108, 1004–1016 (2008)

    Article  Google Scholar 

  6. Xu, S.J., Zheng, W.J., Radisic, D., Bowen, K.H.: The stabilization of arginine’s zwitterion by dipole-binding of an excess electron. J. Chem. Phys. 122, 1103–1107 (2005)

    Google Scholar 

  7. Park, S.W., Im, S., Lee, S.: Structure and Stability of Glycine-(H2O)3 Cluster and Anion: Zwitterion vs. Canonical Glycine. Int. J. Quantum. Chem. 107, 1316–1327 (2007)

    Article  Google Scholar 

  8. Jensen, J.H., Gordon, M.S.: On the number of water molecules necessary to stabilize the glycine zwitterion. J. Am. Chem. Soc. 117, 8159–8170 (1995)

    Article  Google Scholar 

  9. Balta, B., Aviyente, V.: Solvent effects on glycine.I. a supermolecule modeling of tautomerization via intramolecular proton tranfer. J. Comput. Chem. 24, 1789–1802 (2003)

    Article  Google Scholar 

  10. Meng, X.J.: MP2 study on the proton transfer mechanism of glycine assisted by water. Chinese. J. Struct. Chem. 7, 903–909 (2009)

    Google Scholar 

  11. Bachrach, S.M.: Microsolvation of glycine: A DFT study. J. Phys. Chem. A 112, 3722–3730 (2008)

    Article  Google Scholar 

  12. Kim, J.Y., Im, S., Kim, B., Desfrancois, C., Lee, S.: Structures and energetics of Gly-(H2O)5: Thermodynamic and kinetic stabilities. J. Chem. Phys. Lett. 451, 198–203 (2008)

    Article  Google Scholar 

  13. Meng, X.J.: Theoretical study on structures and properties of dihydrated zwitterionic glycine complexes. Acta. Phys. -Chim. Sin. 1, 98–101 (2006)

    Google Scholar 

  14. Wang, K.C., Meng, X.J., Shi, J.: Theoretical Studies on the Hydrogen Bond Transfer and Proton Transfer between Anamorphoses of the Dihydrated Glycine Complex. Chinese. J. Struct. Chem. 26, 580–586 (2007)

    Google Scholar 

  15. Sahu, P.K., Lee, S.L.: Effect of microsolvation on zwitterionic glycine: an ab initio and density functional theory study. J. Mol. Model. 14, 385–392 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Meng, X., Zhao, H., Ju, X. (2010). Theoretical Studies on the Proton Transfer through Water Bridges in Hydrated Glycine Cluster. In: Zhu, R., Zhang, Y., Liu, B., Liu, C. (eds) Information Computing and Applications. ICICA 2010. Communications in Computer and Information Science, vol 106. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16339-5_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16339-5_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16338-8

  • Online ISBN: 978-3-642-16339-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics