Skip to main content

On the Hardness of Counting and Sampling Center Strings

  • Conference paper
String Processing and Information Retrieval (SPIRE 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6393))

Included in the following conference series:

Abstract

Given a set S of n strings, each of length ℓ, and a non-negative value d, we define a center string as a string of length ℓ that has Hamming distance at most d from each string in S. The #Closest String problem aims to determine the number of unique center strings for a given set of strings S and input parameters n, ℓ, and d. We show #Closest String is impossible to solve exactly or even approximately in polynomial time, and that restricting #Closest String so that any one of the parameters n, ℓ, or d is fixed leads to an FPRAS. We show equivalent results for the problem of efficiently sampling center strings uniformly at random.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ben-Dor, A., Lancia, G., Perone, J., Ravi, R.: Banishing bias from consensus strings. In: Hein, J., Apostolico, A. (eds.) CPM 1997. LNCS, vol. 1264, pp. 247–261. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  2. Boucher, C., Brown, D.G.: Detecting motifs in a large data set: applying probabilistic insights to motif finding. In: Rajasekaran, S. (ed.) BICoB 2009. LNCS, vol. 5462, pp. 139–150. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Deng, X., Li, G., Li, Z., Ma, B., Wang, L.: Genetic design of drugs without side-effects. SIAM Journal on Computing 32(4), 1073–1090 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dopazo, J., Rodríguez, A., Sáiz, J.C., Sobrino, F.: Design of primers for PCR amplification of highly variable genomes. Computer Applications in the Biosciences 9, 123–125 (1993)

    Google Scholar 

  5. Dyer, M.: Approximate counting by dynamic programming. In: Proc. of STOC, pp. 693–699 (2003)

    Google Scholar 

  6. Dyer, M., Frieze, A.: Randomly colouring graphs with lower bounds on girth and maximum degree. In: Proc. of FOCS, pp. 579–587 (2001)

    Google Scholar 

  7. Dyer, M., Frieze, A., Jerrum, M.: Approximately counting hamilton paths and cycles in dense graphs. SIAM Journal on Computing 27(5), 1262–1272 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dyer, M., Frieze, A., Jerrum, M.: On counting independent sets in sparse graphs. SIAM Journal on Computing 31(5), 1527–1541 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fellows, M.R., Gramm, J., Neidermeier, R.: On the parameterized intractability of closest substring and related problems. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 262–273. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Fellows, M.R., Gramm, J., Niedermeier, R.: On the parameterized intractability of motif search problems. Combinatorica 26, 141–167 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Frances, M., Litman, A.: On covering problems of codes. Theoretical Computer Science 30(2), 113–119 (1997)

    MathSciNet  MATH  Google Scholar 

  12. Gramm, J., Niedermeier, R., Rossmanith, P.: Fixed-parameter algorithms for closest string and related problems. Algorithmica 37(1), 25–42 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hayes, T.P., Vigoda, E.: A non-markovian coupling for randomly sampling colorings. In: Proc. of FOCS, pp. 618–627 (2003)

    Google Scholar 

  14. Jerrum, M.R., Sinclair, A.: Approximating the permanent. SIAM Journal on Computing 18(6), 1149–1178 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jerrum, M.R., Valiant, L.G., Vazirani, V.: Random generation of combinatorial structures from a uniform distribution. Theoretical Computer Science 43 (1986)

    Google Scholar 

  16. Lanctot, J.K., Li, M., Ma, B., Wang, S., Zhang, L.: Distinguishing string selection problems. Information and Computation, 41–55 (2003)

    Google Scholar 

  17. Li, M., Ma, B., Wang, L.: Finding similar regions in many strings. Journal of Computer and System Sciences 65(1), 73–96 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lucas, K., Busch, M., Össinger, S., Thompson, J.A.: An improved microcomputer program for finding gene- and gene family-specific oligonucleotides suitable as primers for polymerase chain reactions or as probes. Computer Applications in the Biosciences 7, 525–529 (1991)

    Google Scholar 

  19. Ma, B.: A polynomial time approximation scheme for the closest substring problem. In: Giancarlo, R., Sankoff, D. (eds.) CPM 2000. LNCS, vol. 1848, pp. 99–107. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  20. Ma, B., Sun, X.: More efficient algorithms for closest string and substring problems. In: Vingron, M., Wong, L. (eds.) RECOMB 2008. LNCS (LNBI), vol. 4955, pp. 396–409. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  21. Molloy, M.: The glauber dynamics on colorings of a graph with high girth and maximum degree. In: Proc. of STOC, pp. 91–98 (2002)

    Google Scholar 

  22. Morris, B., Sinclair, A.: Random walks on truncated cubes and sampling 0-1 knapsack solutions. In: Proc. of FOCS, pp. 230–240 (1999)

    Google Scholar 

  23. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  24. Pavesi, G., Mauri, G., Pesole, G.: An algorithm for finding signals of unknown length in DNA sequences. Bioinformatics 17, S207–S214 (2001)

    Google Scholar 

  25. Pevzner, P., Sze, S.: Combinatorial approaches to finding subtle signals in DNA strings. In: Proc. of 8th ISMB, pp. 269–278 (2000)

    Google Scholar 

  26. Proutski, V., Holme, E.C.: Primer master: A new program for the design and analyiss of PCR primers. Computer Applications in the Biosciences 12, 253–255 (1996)

    Google Scholar 

  27. Tompa, M., Li, N., Bailey, T.L., Church, G.M., De Moor, B., Eskin, E., Favorov, A.V., Frith, M.C., Fu, Y., Kent, W.J., et al.: Assessing computational tools for the discovery of transcription factor binding sites. Nature Biotechnology 23(1), 137–144 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boucher, C., Omar, M. (2010). On the Hardness of Counting and Sampling Center Strings. In: Chavez, E., Lonardi, S. (eds) String Processing and Information Retrieval. SPIRE 2010. Lecture Notes in Computer Science, vol 6393. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16321-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16321-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16320-3

  • Online ISBN: 978-3-642-16321-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics