Skip to main content

VICAL: Visual Cognitive Architecture for Concepts Learning to Understanding Semantic Image Content

  • Conference paper
Image Processing and Communications Challenges 2

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 84))

  • 1122 Accesses

Summary

In this paper, we are interested by the different sides of the visual learning and the visual machine learning, as well as the development of the ”visual cognitive” evolution cycle. For this purpose, we present an expected cognitive architecture framework to highlight all the visual learning functionalities. Despite the fact that our investigations were based on the conception of a cognitive processor as a high interpreter of object recognition tasks, we strongly emphasize on a novel evolutionary pyramidal learning. Indeed, this elaborated learning approach based on association rules enables to learn highest concepts induced from concepts of lower level in order to progressively understand the highest semantic content of an input image.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguilar-Ruiz, J.S., Riquelme, J.C., Toro, M.: Evolutionary learning of hierarchical decision rules. IEEE Transactions on Man and Cybernetics, Part B 33(2), 324–331 (2003)

    Article  Google Scholar 

  2. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between set of items in large databases. In: Proc. ACM SIGMOD International Conference on Management of Data, Washington, DC, pp. 207–216 (1993)

    Google Scholar 

  3. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large database. In: Proceedings of 20th International Conference on Very Large Data Bases, Santiago, Chile (1994)

    Google Scholar 

  4. Bhanu, B., Lin, Y., Krawiek, K.: Evolutionary synthesis of pattern recognition systems. Springer, New York (2005)

    MATH  Google Scholar 

  5. De Jong, K.A., Spearsm, W.M., Gordon, D.F.: Using genetic algorithms for concept learning. Machine Learning, 161–188 (1993)

    Google Scholar 

  6. Giordana, A., Neri, F.: Search intensive concept induction. Evolutionary Computation 3(4), 376–416 (1996)

    Google Scholar 

  7. Greene, D.P., Smith, S.F.: Competition-based induction of decision models from examples. Machine Learning 13, 229–257 (1993)

    Article  Google Scholar 

  8. Hekanaho, J.: GA-based rule enhancement concept learning. In: Proc. Third International Conference on Knowledge Discovery and Data Mining, New Port Bearch, CA, USA, pp. 183–186 (1997)

    Google Scholar 

  9. Holland, J.: Escaping brittleness: The possibilities of general-purpose learning algorithms alied to parallel rule-based systems. In: Michalski, R., Carbonell, J., Mitchell, T. (eds.) Machine Learning: An Artificial Intelligence Aroach (1986)

    Google Scholar 

  10. Huttenlocher, D.P., Rucklidge, W.J.: A multi-resolution technique for comparing images using Hausdorff distance, Dpt. of CS, Cornell University (1994)

    Google Scholar 

  11. Janikow, C.Z.: A knowledge intensive genetic algorithm for supervised learning. Machine Learning 13, 189–228 (1993)

    Article  Google Scholar 

  12. Krawiec, K.: Learning high-level visual concepts using attributed primitives and genetics programming. In: Rothlauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C., Drechsler, R., Lutton, E., Machado, P., Moore, J.H., Romero, J., Smith, G.D., Squillero, G., Takagi, H. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 515–519. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Krawiec, K.: Evolutionary learning of primitive-based visual concepts. In: Proc. IEEE Congress on Evolutionary Computation, Vancouver, BC, Canada, pp. 1308–1315 (2006)

    Google Scholar 

  14. Krawiec, K., Bhanu, B.: Visual learning by coevolutionary features synthesis. IEEE Transactions on Systems Man and Cybernetics Part B 35, 409–425 (2005)

    Article  Google Scholar 

  15. Maloof, M., Langley, P., Binford, P., Nevatia, R., Sage, S.: Improved rooftop detection in aerial images with machine learning. Machine Learning 53, 157–1991 (2003)

    Article  Google Scholar 

  16. Ogiela, M., Tadeusiewicz, R.: Nonlinear processing and semantic content analysis in medical imaging - a cognitive aroach. IEEE Transactions on Instrumentation and Measurements 54, 2149–2155 (2005)

    Article  Google Scholar 

  17. Rizki, M., Zmuda, M., Tamburino, L.: Evolving pattern recognition systems. IEEE transactions on Evolutionary Computation 6, 594–609 (2002)

    Article  Google Scholar 

  18. Savasere, A., Omiecinski, E., Navathe, S.: An efficient algorithm for mining association rules. In: Proceedings of the VLDB Conference, Zurich, Switzerland, pp. 432–444 (1995)

    Google Scholar 

  19. Segen, J.: GEST: a learning computer vision system that recognizes hand gestures. In: Michalski, R., Tecuci, G. (eds.) Machine Learning, A Multistrategy Aroach, vol. IV, pp. 621–634. Morgan Kaufman, San Francisco (1994)

    Google Scholar 

  20. Smith, S.: Flexible learning of problem solving heuristics through adaptive search. In: Proc. Eight International Joint Conference on Artificial Intelligence, pp. 422–425 (1983)

    Google Scholar 

  21. Teller, A., Veloso, M.: PADO: a new learning architecture for object recognition. In: Ikeuchi, K., Veloso, M. (eds.) Symbolic Visual Learning, pp. 77–112. Oxford Press, New York (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ali, Y.M.B. (2010). VICAL: Visual Cognitive Architecture for Concepts Learning to Understanding Semantic Image Content. In: Choraś, R.S. (eds) Image Processing and Communications Challenges 2. Advances in Intelligent and Soft Computing, vol 84. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16295-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16295-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16294-7

  • Online ISBN: 978-3-642-16295-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics