Skip to main content

Distinguishing Distributions Using Chernoff Information

  • Conference paper
Provable Security (ProvSec 2010)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6402))

Included in the following conference series:

Abstract

In this paper, we study the soundness amplification by repetition of cryptographic protocols. As a tool, we use the Chernoff Information. We specify the number of attempts or samples required to distinguish two distributions efficiently in various protocols. This includes weakly verifiable puzzles such as CAPTCHA-like challenge-response protocols, interactive arguments in sequential composition scenario and cryptanalysis of block ciphers. As our main contribution, we revisit computational soundness amplification by sequential repetition in the threshold case, i.e when completeness is not perfect. Moreover, we outline applications to the Leftover Hash Lemma and iterative attacks on block ciphers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn, L.V., Blum, M., Hopper, N.J., Langford, J.: CAPTCHA: Using Hard AI Problems for Security. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 294–311. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Baignères, T.: Quantitative Security of Block Ciphers: Designs and Cryptanalysis Tools. PhD thesis, EPFL (2008)

    Google Scholar 

  3. Barak, B., Goldreich, O.: Universal arguments and their applications. In: Electronic Colloquium on Computational Complexity (2001)

    Google Scholar 

  4. Bellare, M., Impagliazzo, R., Naor, M.: Does Parallel Repetition Lower the Error in Computationally Sound Protocols. In: Proceedings of the Thirty-Eighth Annual IEEE Symposium on Foundations of Computer Science, pp. 374–383 (1997)

    Google Scholar 

  5. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. Journal of Cryptology 4(1), 3–72 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blondeau, C., Gérard, B.: On the Data Complexity of Statistical Attacks Against Block Ciphers. In: Cryptology ePrint (2009)

    Google Scholar 

  7. Boneh, D.: The Decision Diffie-Hellman Problem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  8. Canetti, R., Halevi, S., Steiner, M.: Hardness Amplification of Weakly Verifiable Puzzles. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 17–33. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Chernoff, H.: Sequential Analysis and Optimal Design. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 8. SIAM, Philadelphia (1972)

    Book  MATH  Google Scholar 

  10. Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness and probabilistic communication complexity. SIAM Journal on Computing 17(2), 230–261 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chung, K., Vadhan, S.: Tight Bounds for Hashing Block Sources. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX and RANDOM 2008. LNCS, vol. 5171, pp. 357–370. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley Series in Telecommunications. John Wiley & Sons, Chichester (1991)

    Book  MATH  Google Scholar 

  13. Damgård, I., Pfitzmann, B.: Sequential Iteration of Interactive Arguments and an Efficient Zero-knowledge Argument for NP. Technical report, BRICS Report Series, Department of Computer Science, University of Aarhus (1997)

    Google Scholar 

  14. Feige, U., Verbitsky, O.: Error Reduction by Parallel Repetition - A Negative Result. Combinatorica 22, 461–478 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Goldreich, O.: Modern Cryptography, Probabilistic Proofs and Pseudo-randomness. Algorithms and Combinatorics. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  16. Hoeffding, W.: Probability Inequalities for Sums of Bounded Random Variables. Journal of the American Statistical Association 58(301), 13–30 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  17. Impagliazzo, R., Jaiswal, R., Kabanets, V.: Chernoff-Type Direct Product Theorems. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 500–516. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Impagliazzo, R., Jaiswal, R., Kabanets, V.: Chernoff-Type Direct Product Theorems. Journal of Cryptology 22(1), 75–92 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random Generation from One-way Functions. In: Proceedings of the 21st Annual ACM Symposium on Theory of Computing, pp. 12–24. ACM Press, New York (1989)

    Google Scholar 

  20. Juta, C.S.: Almost Optimal Bounds for Direct Product Threshold Theorem. Technical report, ECCC (2010)

    Google Scholar 

  21. Jutla, C.S.: Almost Optimal Bounds for Direct Product Threshold Theorem. In: Theory of Cryptography Conference. Springer, Heidelberg (2010)

    Google Scholar 

  22. Kullback, S., Leibler, R.A.: On Information and Sufficiency. The Annals of Mathematical Statistics 22(1), 79–86 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lai, X., Massey, J.L., Murphy, S.: Markov Ciphers and Differential Cryptanalysis. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  24. Luby, M., Rackoff, C.: How to Construct Pseudorandom Permutations from Pseudorandom Functions. SIAM Journal of Computing 17, 373–386 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  25. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  26. Mori, G., Malik, J.: Recognising Objects in Adversarial Clutter: Breaking a Visual CAPTCHA. In: IEEE Conference Compurt Vision and Pattern Recognition, pp. 134–141. IEEE CS Press, Los Alamitos (2003)

    Google Scholar 

  27. Pietrzak, K., Wikström, D.: Parallel Repetition of Computationally Sound Protocols Revisited. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 86–102. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  28. Raz, R.: A parallel repetition theorem. SIAM Journal on Computing 27, 763–803 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rényi, A.: On Measures of Information and Entropy. In: Proceedings of the 4th Berkeley Symposium on Mathematics, Statistics and Probability, pp. 547–561 (1960)

    Google Scholar 

  30. Yan, J., Salah, A.: CAPTCHA Security: A Case Study. Journal of IEEE Security and Privacy 7, 22–28 (2009)

    Article  Google Scholar 

  31. Zuckerman, D.: Simulating BPP using a general weak random source. Algorithmica 16(4-5), 367–391 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baignères, T., Sepehrdad, P., Vaudenay, S. (2010). Distinguishing Distributions Using Chernoff Information. In: Heng, SH., Kurosawa, K. (eds) Provable Security. ProvSec 2010. Lecture Notes in Computer Science, vol 6402. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16280-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16280-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16279-4

  • Online ISBN: 978-3-642-16280-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics