Advertisement

Rough Temporal Vague Sets in Pawlak Approximation Space

  • Yonghong Shen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6401)

Abstract

The combination of temporal vague set theory and rough set theory is developed in this paper. The lower and upper approximation operators of a temporal vague set are constructed, which is partitioned by an indiscernibility relation in Pawlak approximation space, and the concept of rough temporal vague sets is proposed as a generalization of rough vague sets. Further properties associated with the lower and upper approximations of temporal vague sets are studied. Finally, the roughness measure of a temporal vague set is defined as an extension of the parameterized roughness measure of a vague set. Meantime, some properties of roughness measure are established.

Keywords

Temporal vague sets Pawlak approximation space rough temporal vague sets temporal αβ-level sets roughness measure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gau, W.L., Buehrer, D.J.: Vague sets. IEEE Transactions on Systems, Man and Cybernetics 23, 610–614 (1993)zbMATHCrossRefGoogle Scholar
  2. 2.
    Pawlak, Z.: Rough sets. Internationtal Journal of Computer and Information Sciences 11, 341–356 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Pawlak, Z.: Rough sets: Theoretical aspects of reasoning about data. Kluwer academic publishers, Dordrecht (1991)zbMATHGoogle Scholar
  4. 4.
    Pawlak, Z.: Rough sets and fuzzy sets. Fuzzy Sets and Systems 17, 99–102 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. International Journal of General Systems 17, 191–209 (1990)zbMATHCrossRefGoogle Scholar
  6. 6.
    Dubois, D., Prade, H.: Two fold fuzzy sets and rough sets-some issues in knowledge representation. Fuzzy Sets and Systems 23, 3–18 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Wygralak, M.: Rough sets and fuzzy sets-some remarks on interrelations. Fuzzy Sets and Systems 29, 241–243 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Yao, Y.Y.: A comparative study of fuzzy sets and rough sets. Information Sciences 109, 227–242 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Yao, Y.Y.: Semantics of fuzzy sets in rough set theory. LNCS Transactions on Rough Sets 2, 310–331 (2004)Google Scholar
  10. 10.
    Yao, Y.Y.: Combination of rough and fuzzy sets based on α-level sets. In: Lin, T.Y., Cercone, N. (eds.) Rough Sets and Data Mining: Analysis for Imprecise Data, pp. 301–321. Kluwer Academic Publishers, Boston (1997)Google Scholar
  11. 11.
    Wang, J., Liu, S.Y., Zhang, J.: Roughness of a vague set. International Journal of Computational Cognition 3(3), 83–87 (2005)Google Scholar
  12. 12.
    Banerjee, M., Sankar, K.P.: Roughness of a fuzzy set. Information Sciences 93, 235–246 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Eswarlal, T.: Roughness of a Boolean vague set. International Journal of Computational Cognition 6(1), 8–11 (2008)Google Scholar
  14. 14.
    Gu, S.M., Gao, J., Tian, X.Q.: A fuzzy measure based on variable precision rough sets. In: Cao, B.Y. (ed.) Fuzzy Information and Engineering (ICFIE). ASC, vol. 40, pp. 798–807 (2007)Google Scholar
  15. 15.
    Huynh, V.N., Nakamori, Y.: A roughness measure for fuzzy sets. Information Sciences 173, 255–275 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Zhang, X.Y., Xu, W.H.: A Novel Approach to Roughness Measure in Fuzzy Rough Sets. Fuzzy Information and Engineering (ICFIE) ASC 40, 775–780 (2007)CrossRefGoogle Scholar
  17. 17.
    Pattaraintakorn, P., Naruedomkul, K., Palasit, K.: A note on the roughness measure of fuzzy sets. Applied Mathematics Letters 22, 1170–1173 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Al-Rababah, A., Biswas, R.: Rough vague sets in an approximation space. International Journal of Computational Cognition 6(4), 60–63 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yonghong Shen
    • 1
  1. 1.School of Mathematics and StatisticsTianshui Normal UniversityTianshuiP.R. China

Personalised recommendations