Skip to main content

An Improved FCM Clustering Method for Interval Data

  • Conference paper
  • 967 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6401))

Abstract

In fuzzy c-means (FCM) clustering algorithm, each data point belongs to a cluster with a degree specified by a membership grade. Furthermore, FCM partitions a collection of vectors in c fuzzy groups and finds a cluster center in each group so that the objective function is minimized. This paper introduces a clustering method for objects described by interval data. It extends the FCM clustering algorithm by using combined distances. Moreover, simulated experiments with interval data sets have been performed in order to show the usefulness of this method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bezdek, J.C.: Cluster validity with fuzzy sets. Journal of Cybernetics 4, 58–73 (1974)

    Google Scholar 

  2. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York (1981)

    MATH  Google Scholar 

  3. Chavent, M., de Carvalho, F.A.T., Lechevallier, Y., et al.: New clustering methods for interval data. Computational Statistics 21, 211–229 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chavent, M., Lechevallier, Y.: Dynamical clustering algorithm of interval data: optimization of an adequacy criterion based on hausdorff distance. In: Classification, Clustering and Data Analysis, pp. 53–59. Springer, Heidelberg (2002)

    Google Scholar 

  5. Chen, S., Zhang, D.Q.: Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Transactions on Systems, Man and Cybernetics-B 34, 1907–1916 (2004)

    Article  Google Scholar 

  6. Choe, H., Jordan, J.B.: On the optimal choice of parameters in a fuzzy c-means algorithm. In: Proc. IEEE International Conference on Fuzzy Systems, pp. 349–354. IEEE Press, San Diego (1992)

    Chapter  Google Scholar 

  7. De Carvalho, F.A.T., Brito, P., Bock, H.H.: Dynamic clustering for interval data based on L 2 distance. Computational Statistics 21, 231–250 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. De Carvalho, F.A.T., de Souza, R.M.C.R., Silva, F.C.D.: A clustering method for symbolic interval-type data using adaptive chebyshev distances. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 266–275. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Dunn, J.C.: A fuzzy relative of ISODATA process and its use in detecting compact well-separated clusters. Journal of Cybernetics 3, 32–57 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  10. Jian, J.Q., Ma, C., Jia, H.B.: Improved-FCM-based readout segmentation and PRML detection for photochromic optical disks. In: Wang, L., Jin, Y. (eds.) FSKD 2005. LNCS (LNAI), vol. 3613, pp. 514–522. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Li, J., Gao, X.B., Tian, C.N.: FCM-based clustering algorithm ensemble for large data sets. In: Wang, L., Jiao, L., Shi, G., Li, X., Liu, J. (eds.) FSKD 2006. LNCS (LNAI), vol. 4223, pp. 559–567. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Pal, N.R., Bezdek, J.C.: On cluster validity for the fuzzy c-mean model. IEEE Transactions on Fuzzy Systems 3, 370–379 (1995)

    Article  Google Scholar 

  13. Souza, R.M.C.R., Salazar, D.R.S.: A non-linear classifier for symbolic interval data based on a region oriented approach. In: Köppen, M., Kasabov, N., Coghill, G. (eds.) ICONIP 2008, Part II. LNCS, vol. 5507, pp. 11–18. Springer, Heidelberg (2009)

    Google Scholar 

  14. Yu, J., Cheng, Q.S., Huang, H.K.: Analysis of the weighting exponent in the FCM. IEEE Transactions on Systems, Man and Cybernetics-B 34, 634–639 (2004)

    Article  Google Scholar 

  15. Yu, J., Yang, M.S.: Optimality test for generalized FCM and its application to parameter selection. IEEE Transactions on Fuzzy Systems 13, 164–176 (2005)

    Article  Google Scholar 

  16. Zhang, J.S., Leung, Y., Xu, Z.B.: Clustering methods by simulating visual systems. Chinese Journal of Computers 24, 496–501 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gu, SM., Zhao, JW., He, L. (2010). An Improved FCM Clustering Method for Interval Data. In: Yu, J., Greco, S., Lingras, P., Wang, G., Skowron, A. (eds) Rough Set and Knowledge Technology. RSKT 2010. Lecture Notes in Computer Science(), vol 6401. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16248-0_74

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16248-0_74

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16247-3

  • Online ISBN: 978-3-642-16248-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics