Conceptual Reduction of Fuzzy Dual Concept Lattices

  • Xiao-Xue Song
  • Wen-Xiu Zhang
  • Qiang Zhao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6401)


In this paper we discuss the conceptual reduction of fuzzy dual concept lattices. Three pairs of operators in a fuzzy formal context are introduced. Based on the proposed operators,we present three types of variable threshold dual concept lattices. The properties and the relations of them are discussed. The result shows that the number of concepts in variable threshold dual concept lattices is less than that in fuzzy dual concept lattices, and the important concepts are preserved.


Galois connection fuzzy formal context fuzzy dual concept lattice conceptual reduction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Belohlavek, R., Vychodil, V.: Reducing the size of fuzzy concept lattices by hedges. In: The IEEE International Conference on Fuzzy Systems, Nevada, USA, pp. 663–668 (2005)Google Scholar
  2. 2.
    Belohlavek, R., Dvorák, J., Outrata, J.: Fast factorization by similarity in formal concept analysis of data with fuzzy attributes. Journal of Computer and System Sciences 73, 1012–1022 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Burusco, A., Gonzalez, R.F.: The study of the L-fuzzy concept lattice. Mathware and Soft Computing 1(3), 209–218 (1994)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Elloumi, S., Jaam, J., Hasnah, A., Jaoua, A., Nafkha, I.: A multi-level conceptual data reduction approach based on the Lukasiewicz implication. Information Sciences 163, 253–262 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Erné, M., Koslowski, J., Melton, A., Strecker, G.E.: A primer on Galois connections. In: Papers on General Topology and Applications Seventh Summer Conference Annals of the New York Academy of Sciences, vol. 704, pp. 103–125 (1993)Google Scholar
  6. 6.
    Fan, S.Q., Zhang, W.X., Xu, W.: Fuzzy Inference based on fuzzy concept lattice. Fuzzy sets and systems 157, 3177–3187 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Ganter, B., Wille, R.: Formal Concept Analysis, Mathematical Foundations. Springer, Berlin (1999)zbMATHGoogle Scholar
  8. 8.
    Georgescu, G., Popescu, A.: Non-dual fuzzy connections. Archive Math Logic 43(8), 1009–1039 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Popescu, A.: A general approach to fuzzy concept. Math. Logic Quaterly 50(3), 1–17 (2001)Google Scholar
  10. 10.
    Zhang, W.X., Ma, J.M., Fan, S.Q.: Variable threshold concept lattice. Information Sciences 177(22), 4883–4892 (2007)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Xiao-Xue Song
    • 1
  • Wen-Xiu Zhang
    • 2
  • Qiang Zhao
    • 1
  1. 1.Department of ComputerXianyang Normal College, XianyangShaan’xiP.R. China
  2. 2.Institute for Information and System Sciences, Faculty of ScienceXi’an Jiaotong UniversityXi’an, Shaan’xiP.R. China

Personalised recommendations