An Equivalent Form of Rough Logic System RSL

  • Yingchao Shao
  • Zhongmin Xie
  • Keyun Qin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6401)


Firstly, based on regular double Stone algebra, a new kind of rough logic system is established, and obtain some properties in this paper.Secondly,we prove that it is one equivalent form of rough logic system RSL.


fuzzy logic systems regular double Stone algebras rough logic systems RSL 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Duntsch, I.: Rough relation algebras. Fundamenta Informaticae 21, 321–331 (1994)MathSciNetGoogle Scholar
  2. 2.
    Düntsch, I., Winter, M.: Rough Relation Algebras Revisited. Fundamenta Informaticae 74, 283–300 (2006)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Xu, Y., Ruan, D., Qin, K.Y., et al.: Lattice-Valued logic. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  4. 4.
    Blyth, T.S.: Lattices and Ordered Algebraic structures. Springer, New York (2005)zbMATHGoogle Scholar
  5. 5.
    Pei, D.: The Natural Deductive System of Fuzzy Logic. Joural of Engineering Mathematics 19(3), 95–100 (2002) (in Chinese)Google Scholar
  6. 6.
    Esteva, F., Godo, L.: Monoidal t-norm based logic: towards a logic for left-continuous t-norms. Fuzzy Sets and Systems 124, 271–288 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Radzikowska, A.M., Kerre, E.E.: A comparative study off fuzzy rough sets. Fuzzy Sets and Systems 126, 137–155 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Pei, D.: On equivalent forms of fuzzy logic systems NM and IMTL. Fuzzy Sets and Systems 138, 187–195 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Wang, G.J.: On the logic foundation of fuzzy reasoning. Inform Sci. 117(1), 47–88 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Qin, K.Y., Pei, Z.: On the topological properties of fuzzy rough sets. Fuzzy sets and systems 114, 601–613 (2005)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Pei, D.: Simplification and independence of axioms of fuzzy logic systems IMTL and NM. Fuzzy Sets and Systems 152, 303–320 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Zhang, X.H.: Fuzzy logic and its algebraic analysis. Science Press (2008) (in Chinese)Google Scholar
  13. 13.
    Beazer, R.: A note on injective double Stone algebras. Algebra Univ. 5, 239–241 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Changliu, H., Zhenming, S.: The foundation of Lattice Theory. Henan University Press (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yingchao Shao
    • 1
  • Zhongmin Xie
    • 2
  • Keyun Qin
    • 1
  1. 1.School of MathematicsSouthwest jiaotong university ChengduSichuanChina
  2. 2.School of Communication and Information EngineerUniversity of Electronic Science, and Technology of China ChengduSichuanChina

Personalised recommendations