Temporal Dynamics in Rough Sets Based on Coverings

  • Davide Ciucci
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6401)


Given a covering of a universe, we study how time evolution of the covering influences rough approximations and covering reduction. The definition of time evolution considers two cases: new objects are added to the system or the granules are changed.


Time Evolution Temporal Dynamics Order Relation Monotone Increase Common Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bianucci, D., Cattaneo, G.: Information entropy and granulation co-entropy of partitions and coverings: A summary. Transactions on Rough Sets 10, 15–66 (2009)CrossRefGoogle Scholar
  2. 2.
    Ciucci, D.: Classification of rough sets dynamics. In: Szczuka, M. (ed.) RSCTC 2010. LNCS (LNAI), vol. 6086, pp. 257–266. Springer, Heidelberg (2010)Google Scholar
  3. 3.
    Pagliani, P.: Pretopologies and dynamic spaces. Fundamenta Informaticae 59(2-3), 221–239 (2004)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Samanta, P., Chakraborty, M.K.: Covering based approaches to rough sets and implication lattices. In: Sakai, H., Chakraborty, M.K., Hassanien, A.E., Ślęzak, D., Zhu, W. (eds.) RSFDGrC 2009. LNCS, vol. 5908, pp. 127–134. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Yang, T., Li, Q.: Reduction about approximation spaces of covering generalized rough sets. International journal of approximate reasoning 51, 335–345 (2010)zbMATHCrossRefGoogle Scholar
  6. 6.
    Yao, Y.: Relational interpretations of neighborhood operators and rough set approximation operators. Information Sciences 111, 239–259 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Zhu, W., Wang, F.Y.: Reduction and axiomatization of covering generalized rough sets. Information Sciences 152, 217–230 (2003)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Davide Ciucci
    • 1
  1. 1.Dipartimento Di Informatica, Sistemistica e ComunicazioneUniversità di Milano – BicoccaMilanoItalia

Personalised recommendations