Advertisement

A Robust Fuzzy Rough Set Model Based on Minimum Enclosing Ball

  • Shuang An
  • Qinghua Hu
  • Daren Yu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6401)

Abstract

Fuzzy rough set theory was introduced as a useful mathematical tool to handle real-valued data. Unluckily, its sensitivity to noise has a great impact on the application in real world. So it is necessary to enhance the robustness of fuzzy rough sets. In this work, based on the minimum enclosing ball problem we introduce a robust model of fuzzy rough sets. In addition, we define a robust fuzzy dependency function and apply it to evaluate features corrupted by noise. Experimental results show that the new model is robust to noise.

Keywords

Fuzzy Equivalence Relation Spatial Median Minimum Enclose Ball Fuzzy Similarity Relation Core Vector Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blake, C.L., Merz, C.J.: UCI Repository of Machine Learning Databases (1998), http://www.ics.uci.edu/mlearn/MLRepository.html
  2. 2.
    Chen, Y.X., Dang, X., Peng, H.X., Bart Jr., H.L.: Outlier detection with the kernelized spatial depth function. IEEE Transactions on Pattern Analysis and Machine Intelligence 31, 288–305 (2009)CrossRefGoogle Scholar
  3. 3.
    Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. General systems 17, 191–209 (1990)zbMATHCrossRefGoogle Scholar
  4. 4.
    Fischer, K.: The smallest enclosing ball of balls: combinatorial structure and algorithms. In: Proceedings of the Nineteenth Annual Symposium on Computational Geometry, USA, pp. 292–301 (2003)Google Scholar
  5. 5.
    Hu, Q.H., Liu, J.F., Yu, D.R.: Stability analysis on rough set based feature evaluation. In: Wang, G., Li, T., Grzymala-Busse, J.W., Miao, D., Skowron, A., Yao, Y. (eds.) RSKT 2008. LNCS (LNAI), vol. 5009, pp. 88–96. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Hu, Q.H., Yu, D.R., Liu, J.F., Wu, C.X.: Neighborhood rough set based heterogeneous feature subset selection. Information Sciences 178, 3577–3594 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Radzikowska, A.M., Kerre, E.E.: A comparative study of fuzzy rough sets. Fuzzy Sets and Systems 126, 137–155 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Morsi, N.N., Yakout, M.M.: Axiomatics for fuzzy rough sets. Fuzzy Sets and Systems 100, 327–342 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Rolka, A.M., Rolka, L.: Variable precision fuzzy rough sets. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 144–160. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Skowron, A., Polkowski, L.: Rough sets in knowledge discovery. Springer, Berlin (1998)Google Scholar
  12. 12.
    Taylor, J.S., Cristianini, N.: Kernel methods for pattern analysis. Cambridge University Press, Cambridge (2004)Google Scholar
  13. 13.
    Tsang, I.W., Kwok, J.T., Cheung, P.M.: Core vector machines: Fast SVMtraining on large data sets. Journal of Machine Learning Research 6, 363–392 (2005)MathSciNetGoogle Scholar
  14. 14.
    Tsang, I.W., Kwok, J.T., Zurada, J.M.: Generalized core vector machines. IEEE Transactions on Neural Networks 17, 1126–1140 (2006)CrossRefGoogle Scholar
  15. 15.
    Wu, M.R., Ye, J.P.: A Small Sphere and Large Margin Approach for Novelty Detection Using Training Data with Outliers. IEEE Transactions on Pattern Analysis and Machine Intelligence 11, 2088–2092 (2009)Google Scholar
  16. 16.
    Wu, W.-Z., Zhang, W.-X.: Constructive and axiomatic approaches of fuzzy approximation operators. Information Sciences 159, 233–254 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Wu, W.-Z., Mi, J.-S., Zhang, W.-X.: Generalized fuzzy rough sets. Information Sciences 151, 263–282 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Xu, F.F., Miao, D.Q., Wei, L.: An approach for fuzzy-rough sets attribute reduction via mutual information. In: Proceedings of the Fourth International Conference on Fuzzy Systems and Knowledge Discovery,USA, pp. 107–112 (2007)Google Scholar
  19. 19.
    Yao, Y.Y., Wong, S.K.M., Lingras, P.: A decision-theoretic rough set model. Methodologies for Intelligent Systems 5, 17–24 (1990)MathSciNetGoogle Scholar
  20. 20.
    Zhao, S.Y., Tsang, E.C.C., Chen, D.G.: The model of fuzzy variable precision rough sets. IEEE Transactions on Fuzzy Systems 17, 451–467 (2009)CrossRefGoogle Scholar
  21. 21.
    Zhu, W., Wang, F.-Y.: Reduction and axiomization of covering generalized rough sets. Information Sciences 152, 217–230 (2003)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Shuang An
    • 1
  • Qinghua Hu
    • 1
  • Daren Yu
    • 1
  1. 1.Harbin Institute of TechnologyHarbinP.R. China

Personalised recommendations