Advertisement

Incorporating Great Deluge with Kempe Chain Neighbourhood Structure for the Enrolment-Based Course Timetabling Problem

  • Salwani Abdullah
  • Khalid Shaker
  • Barry McCollum
  • Paul McMullan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6401)

Abstract

In general, course timetabling refers to assignment processes that assign events (courses) to a given rooms and timeslots subject to a list of hard and soft constraints. It is a challenging task for the educational institutions. In this study we employed a great deluge algorithm with kempe chain neighbourhood structure as an improvement algorithm. The Round Robin (RR) algorithm is used to control the selection of neighbourhood structures within the great deluge algorithm. The performance of our approach is tested over eleven benchmark datasets (representing one large, five medium and five small problems). Experimental results show that our approach is able to generate competitive results when compared with previous available approaches. Possible extensions upon this simple approach are also discussed.

Keywords

Great Deluge Kempe Chain Round Robin Course Timetabling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdullah, S., Shaker, K., McCollum, B., McMullan, P.: Dual sequence simulated annealing with round-robin approach for university course timetabling. In: Cowling, P., Merz, P. (eds.) EvoCOP 2010. LNCS, vol. 6022, pp. 1–10. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Abdullah, S., Burke, E.K., McCollum, B.: An investigation of variable neighbourhood search for university course timetabling. In: The 2nd Multidisciplinary International Conference on Scheduling: Theory and Applications (MISTA), pp. 413–427 (2005)Google Scholar
  3. 3.
    Abdullah, S., Burke, E.K., McCollum, B.: Using a randomised iterative improvement algorithm with composite neighbourhood structures for university course timetabling. In: Metaheuristics: Progress in complex systems optimization (Operations Research / Computer Science Interfaces Series), ch. 8. Springer, Heidelberg (2007a) ISBN:978-0-387-71919-1Google Scholar
  4. 4.
    Abdullah, S., Burke, E.K., McCollum, B.: A hybrid evolutionary approach to the university course timetabling problem. In: IEEE Congres on Evolutionary Computation, pp. 1764–1768 (2007b) ISBN: 1-4244-1340-0Google Scholar
  5. 5.
    Al-Betar, M., Khader, A., Yi Liao, I.: A Harmony Search with Multi-pitch Adjusting Rate for the University Course Timetabling. In: Geem, Z.W. (ed.) Recent Advances in Harmony Search Algorithm. SCI, vol. 270, pp. 147–161. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Burke, E.K., Meisels, A., Petrovic, S., Qu, R.: A graph-based hyper-heuristic for timetabling problems. European Journal of Operational Research 176, 177–192 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Burke, E., Eckersley, A., McCollum, B., Petrovic, S., Qu, R.: Hybrid variable neighbourhood approaches to university exam timetabling. Technical Report NOTTCS-TR-2006-2, University of Nottingham, School of CSiT (2006)Google Scholar
  8. 8.
    Landa-Silva, D., Obit, J.H.: Great deluge with non-linear decay rate for solving course timetabling problem. In: The fourth International IEEE conference on Intelligent Systems, Varna, Bulgaria (2008)Google Scholar
  9. 9.
    Lewis, R., Paechter, B.: New crossover operators for timetabling with evolutionary algorithms. In: Lotfi (ed.) Proceedings of the 5th International Conference on Recent Advances in Soft Computing, UK, December 16-18, pp. 189–194 (2004)Google Scholar
  10. 10.
    McMullan, P.: An extended implementation of the great deluge algorithm for course timetabling. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007, Part I. LNCS, vol. 4487, pp. 538–545. Springer, Heidelberg (2007)Google Scholar
  11. 11.
    Socha, K., Knowles, J., Samples, M.: A max-min ant system for the university course timetabling problem. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) ANTS 2002. LNCS, vol. 2463, pp. 1–13. Springer, Heidelberg (2002)Google Scholar
  12. 12.
    Qu, R., Burke, E.K., McCollum, B., Merlot, L.T.G., Lee, S.Y.: A Survey of Search Methodologies and Automated System Development for Examination Timetabling. Journal of Scheduling 12(1), 55–89 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Thompson, J., Dowsland, K.: A robust simulated annealing based examination timetabling system. Computers & Operations Research 25, 637–648 (1998)zbMATHCrossRefGoogle Scholar
  14. 14.
    Turabieh, H., Abdullah, S., McCollum, B.: Electromagnetism-like Mechanism with Force Decay Rate Great Deluge for the Course Timetabling Problem. In: Wen, P., Li, Y., Polkowski, L., Yao, Y., Tsumoto, S., Wang, G. (eds.) RSKT 2009. LNCS, vol. 5589, pp. 497–504. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Salwani Abdullah
    • 1
  • Khalid Shaker
    • 1
  • Barry McCollum
    • 2
  • Paul McMullan
    • 2
  1. 1.Data Mining and Optimization Research Group (DMO), Center for Artificial Intelligence TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.Department of Computer ScienceQueen’s University BelfastBelfastUnited Kingdom

Personalised recommendations