Generate (F, ε)-Dynamic Reduct Using Cascading Hashes

  • Pai-Chou Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6401)


Dynamic reducts with large stability coefficients are good candidates for decision rules generation but it is time consuming to generate them. This paper presents an algorithm dReducts using a cascading hash function to generate (F, ε)-dynamic reducts. With the cascading hash function, an F-dynamic reduct can be generated in O(m 2 n) time with O(mn) space where m and n are total number of attributes and total number of instances of the table. Empirical results of generating (F, ε)-dynamic reducts using five of ten most popular UCI datasets are presented and they are compared to the Rough Set Exploration System (RSES).


dynamic reducts rough sets cascading hash function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bazan, J.G.: A comparison of dynamic and non-dynamic rough set methods for extracting laws from decision table. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery, pp. 321–365. Physica-Verlag, Heidelberg (1998)Google Scholar
  2. 2.
    Bazan, J.G., Szczuka, M.S., Wróblewski, J.: A new version of rough set exploration system. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 397–404. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Hu, X., Lin, T.Y., Han, J.C.: A new rough sets model based on database systems. Fundamenta Informaticae 59, 135–152 (2004)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Komorowski, J., Pawlak, Z., Polkowski, L., Skowron, A.: Rough sets: a tutorial. In: Pa, S.K., Skowron, A. (eds.) Rough Fuzzy Hybridization: A New Trend in Decision-Making, pp. 3–98. Springer, Telos (1999)Google Scholar
  5. 5.
    Kumar, A.: New techniques for data reduction in database systems for knowledge discovery applications. Journal of Intelligent Information Systems 10(1), 31–48 (1998)CrossRefGoogle Scholar
  6. 6.
    Miao, D., Hou, L.: A comparison of rough set methods and representative inductive learning algorithms. Fundamenta Informaticae 59, 203–219 (2004)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Nguyen, S.H., Nguyen, H.S.: Some efficient algorithms for rough set methods. In: Proc. of Information Processing and Management of Uncertainty in Knowledge-Based Systems, pp. 1451–1456 (1996)Google Scholar
  8. 8.
    Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer, Netherlands (1991)zbMATHGoogle Scholar
  10. 10.
    Skowron, A., Rauszer, C.: The discernibility matrices and functions in information Systems. Fundamenta Informaticae 15(2), 331–362 (1991)Google Scholar
  11. 11.
    Skowron, A., Bazan, J., Szczuka, M.S., Wróblewski, J.: Rough Set Exploration System (version 2.2.2),
  12. 12.
    Wang, P.C.: Highly scalable rough set reducts generation. Journal of Information Science and Engineering 23, 1281–1298 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Pai-Chou Wang
    • 1
  1. 1.Department of Information ManagementSouthern Taiwan UniversityTainan CountyTaiwan

Personalised recommendations