Pattern Classification Using Class-Dependent Rough-Fuzzy Granular Space

  • Sankar K. Pal
  • Saroj K. Meher
  • Soumitra Dutta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6401)


The article describes a new rough-fuzzy model for pattern classification. Here, class-dependent granules are formulated in fuzzy environment that preserve better class discriminatory information. Neighborhood rough sets (NRS) are used in the selection of a subset of granulated features that explore the local/contextual information from neighbor granules. The model thus explores mutually the advantages of class-dependent fuzzy granulation and NRS that is useful in pattern classification with overlapping classes. The superiority of the proposed model to other similar methods is demonstrated with both completely and partially labeled data sets using various performance measures. The proposed model learns well even with a lower percentage of training set that makes the system fast.


Fuzzy information granulation rough neighborhood sets rough-fuzzy granular computing pattern recognition soft computing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bargiela, A., Pedrycz, W.: Granular Computing: An Introduction. Kluwer Academic Publishers, Boston (2003)zbMATHGoogle Scholar
  2. 2.
    Zadeh, L.A.: Fuzzy sets and information granularity. In: Gupta, M., Ragade, R., Yager, R. (eds.) Advances in Fuzzy Set Theory and Applications, pp. 3–18. North-Holland Publishing Co., Amsterdam (1979)Google Scholar
  3. 3.
    Zadeh, L.A.: Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems 90, 111–127 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Pawlak, Z.: Rough sets. International Journal of Computer and Information Science 11, 341–356 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Pal, S.K., Skowron, A. (eds.): Rough-Fuzzy Hybridization: A New Trend in Decision Making. Springer, Singapore (1999)zbMATHGoogle Scholar
  6. 6.
    Pal, S.K., Mitra, S.: Multilayer perceptron, fuzzy sets, and classification. IEEE Trans. Neural Networks 3, 683–697 (1992)CrossRefGoogle Scholar
  7. 7.
    Lin, T.Y.: Granulation and nearest neighborhoods: rough set approach. In: Pedrycz, W. (ed.) Granular computing: an emerging paradigm, pp. 125–142. Physica-Verlag, Heidelberg (2001)Google Scholar
  8. 8.
    Hu, Q., Yu, D., Liu, J., Wu, C.: Neighborhood rough set based heterogeneous feature subset selection. Inf. Sciences 178, 3577–3594 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Cohen, J.: A coefficient of aggrement for nominal scale. Education and psychological measurement 20, 37–46 (1960)CrossRefGoogle Scholar
  11. 11.
    Pal, S.K., Ghosh, A., Uma Shankar, B.: Segmentation of remotely sensed images with fuzzy thresholding, and quatitative evaluation. Int. J. of Remote Sensing 21, 2269–2300 (2000)CrossRefGoogle Scholar
  12. 12.
    Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Machine Intell. 1, 224–227 (1979)CrossRefGoogle Scholar
  13. 13.
    Pal, S.K., Majumder, D.D.: Fuzzy sets and decision making approaches in vowel and speaker recognition. IEEE Trans. Syst., Man Cybern. 7, 625–629 (1977)zbMATHCrossRefGoogle Scholar
  14. 14.
  15. 15.
    NRSA, IRS data users hand book, Technical report, Document No. IRS/NRSA/NDC/HB-02/89 (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Sankar K. Pal
    • 1
  • Saroj K. Meher
    • 1
  • Soumitra Dutta
    • 2
  1. 1.Center for Soft Computing ResearchIndian Statistical InstituteKolkataIndia
  2. 2.INSEAD, Blvd de Constance, FontainebleauFrance

Personalised recommendations