Knowledge Reduction in Random Incomplete Information Systems via Evidence Theory

  • Wei-Zhi Wu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6401)


Knowledge reduction is one of the main problems in the study of rough set theory. This paper deals with knowledge reduction in random incomplete information systems based on Dempster-Shafer theory of evidence. The concepts of random belief reducts and random plausibility reducts in random incomplete information systems are introduced. The relationships among the random belief reduct, the random plausibility reduct, and the classical reduct are examined. It is proved that, in a random incomplete information system, an attribute set is a random belief reduct if and only if it is a classical reduct, and a random plausibility consistent set must be a consistent set.


Belief functions incomplete information systems knowledge reduction random incomplete information systems rough sets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beynon, M.: Reducts within the variable precision rough sets model: A further investigation. European Journal of Operational Research 134, 592–605 (2001)zbMATHCrossRefGoogle Scholar
  2. 2.
    Kryszkiewicz, M.: Rough set approach to incomplete information systems. Information Sciences 112, 39–49 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Kryszkiewicz, M.: Rules in incomplete information systems. Information Sciences 113, 271–292 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Leung, Y., Wu, W.-Z., Zhang, W.-X.: Knowledge acquisition in incomplete information systems: A rough set approach. European Journal of Operational Research 168, 164–180 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Li, D.Y., Zhang, B., Leung, Y.: On knowledge reduction in inconsistent decision information systems. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 12, 651–672 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Lingras, P.J., Yao, Y.Y.: Data mining using extensions of the rough set model. Journal of the American Society for Information Science 49, 415–422 (1998)CrossRefGoogle Scholar
  7. 7.
    Mi, J.-S., Wu, W.-Z., Zhang, W.-X.: Approaches to knowledge reductions based on variable precision rough sets model. Information Sciences 159, 255–272 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Nguyen, H.S., Slezak, D.: Approximation reducts and association rules correspondence and complexity results. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 137–145. Springer, Heidelberg (1999)Google Scholar
  9. 9.
    Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Boston (1991)zbMATHGoogle Scholar
  10. 10.
    Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)zbMATHGoogle Scholar
  11. 11.
    Skowron, A.: The rough sets theory and evidence theory. Fundamenta Informaticae 13, 245–262 (1990)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Slezak, D.: Searching for dynamic reducts in inconsistent decision tables. In: Proceedings of IPMU 1998, Paris, France, vol. 2, pp. 1362–1369 (1998)Google Scholar
  13. 13.
    Wu, W.-Z.: Attribute reduction based on evidence theory in incomplete decision systems. Information Sciences 178, 1355–1371 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Wu, W.-Z., Leung, Y., Zhang, W.-X.: Connections between rough set theory and Dempster-Shafer theory of evidence. International Journal of General Systems 31, 405–430 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Wu, W.-Z., Leung, Y., Mi, J.-S.: On generalized fuzzy belief functions in infinite spaces. IEEE Transactions on Fuzzy Systems 17, 385–397 (2009)CrossRefGoogle Scholar
  16. 16.
    Wu, W.-Z., Mi, J.-S.: Knowledge reduction in incomplete information systems based on Dempster-Shafer theory of evidence. In: Wang, G.-Y., Peters, J.F., Skowron, A., Yao, Y. (eds.) RSKT 2006. LNCS (LNAI), vol. 4062, pp. 254–261. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Wu, W.-Z., Zhang, M., Li, H.-Z., Mi, J.-S.: Knowledge reduction in random information systems via Dempster-Shafer theory of evidence. Information Sciences 174, 143–164 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Yao, Y.Y.: Interpretations of belief functions in the theory of rough sets. Information Sciences 104, 81–106 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Yao, Y.Y.: Generalized rough set models. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery: 1. Methodology and Applications, pp. 286–318. Physica, Heidelberg (1998)Google Scholar
  20. 20.
    Zhang, M., Xu, L.D., Zhang, W.-X., Li, H.-Z.: A rough set approach to knowledge reduction based on inclusion degree and evidence reasoning theory. Expert Systems 20, 298–304 (2003)CrossRefGoogle Scholar
  21. 21.
    Zhang, W.-X., Mi, J.-S., Wu, W.-Z.: Approaches to knowledge reductions in inconsistent systems. International Journal of Intelligent Systems 18, 989–1000 (2003)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Wei-Zhi Wu
    • 1
  1. 1.School of Mathematics, Physics and Information ScienceZhejiang Ocean University, ZhoushanZhejiangP.R. China

Personalised recommendations