Skip to main content

Gödel Logics – A Survey

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6397))

Abstract

The logics we present in this tutorial, Gödel logics, can be characterized in a rough-and-ready way as follows: The language is standard, defined at different levels: propositional, quantified-propositional, first-order. The logics are many-valued, and the sets of truth values considered are (closed) subsets of [0, 1] which contain both 0 and 1. 1 is the ‘designated value,’ i.e., a formula is valid if it receives the value 1 in every interpretation. The truth functions of conjunction and disjunction are minimum and maximum, respectively, and in the first-order case quantifiers are defined by infimum and supremum over subsets of the set of truth values.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avron, A.: Hypersequents, logical consequence and intermediate logics for concurrency. Ann. Math. Artificial Intelligence 4, 225–248 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baaz, M.: Infinite-valued Gödel logics with 0-1-projections and relativizations. In: Hájek, P. (ed.) Proc. Gödel 1996, Logic Foundations of Mathematics, Computer Science and Physics – Kurt Gödel’s Legacy. Lecture Notes in Logic, vol. 6, pp. 23–33. Springer, Heidelberg (1996)

    Google Scholar 

  3. Baaz, M., Ciabattoni, A.: A Schütte-Tait style cut-elimination proof for first-order Gödel logic. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, pp. 24–38. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Baaz, M., Ciabattoni, A., Fermüller, C.G.: Hypersequent calculi for Gödel logics—a survey. Journal of Logic and Computation 13, 835–861 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baaz, M., Ciabattoni, A., Fermüller, C.G.: Herbrand’s theorem for prenex Gödel logic and its consequences for theorem proving. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 201–216. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Baaz, M., Leitsch, A., Zach, R.: Completeness of a first-order temporal logic with time-gaps. Theoretetical Computer Science 160(1-2), 241–270 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baaz, M., Leitsch, A., Zach, R.: Incompleteness of a first-order Gödel logic and some temporal logics of programs. In: Büning, H.K. (ed.) CSL 1995. LNCS, vol. 1092, pp. 1–15. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  8. Baaz, M., Leitsch, A., Zach, R.: Incompleteness of an infinite-valued first-order Gödel logic and of some temporal logics of programs. In: Börger, E. (ed.) CSL 1995. LNCS, vol. 1092, pp. 1–15. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  9. Baaz, M., Preining, N., Zach, R.: Completeness of a hypersequent calculus for some first-order Gödel logics with delta. In: Proceedings of 36th International Symposium on Multiple-valued Logic, Singapore. IEEE Press, Los Alamitos (May 2006)

    Google Scholar 

  10. Baaz, M., Preining, N., Zach, R.: First-order Gödel logics. Annals of Pure and Applied Logic 147, 23–47 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Baaz, M., Veith, H.: An axiomatization of quantified propositional Gödel logic using the Takeuti-Titani rule. In: Buss, S., Hájek, P., Pudlák, P. (eds.) Proceedings of the Logic Colloquium 1998, Prague. LNL, vol. 13, pp. 74–87. ASL (2000)

    Google Scholar 

  12. Baaz, M., Zach, R.: Compact propositional Gödel logics. In: Proceedings of 28th International Symposium on Multiple-valued Logic, Fukuoka, Japan, pp. 108–113. IEEE Press, Los Alamitos (May 1998)

    Google Scholar 

  13. Baaz, M., Zach, R.: Hypersequents and the proof theory of intuitionistic fuzzy logic. In: Clote, P.G., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 187–201. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  14. Beckmann, A., Goldstern, M., Preining, N.: Continuous Fraïssé conjecture. Order 25(4), 281–298 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Beckmann, A., Preining, N.: Linear Kripke frames and Gödel logics. Journal of Symbolic Logic 71(1), 26–44 (2007)

    Article  MATH  Google Scholar 

  16. Ciabattoni, A.: A proof-theoretical investigation of global intuitionistic (fuzzy) logic. Archive of Mathematical Logic 44, 435–457 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dummett, M.: A propositional logic with denumerable matrix. Journal of Symbolic Logic 24, 96–107 (1959)

    Article  MATH  Google Scholar 

  18. Fitting, M.C.: Intuitionistic logic, model theory and forcing. Studies in Logic and the Foundation of Mathematics. North-Holland Publishing Company, Amsterdam (1969)

    MATH  Google Scholar 

  19. Fraïssé, R.: Sur la comparaison des types d’ordres. C. R. Acad. Sci. Paris 226, 1330–1331 (1948)

    MathSciNet  MATH  Google Scholar 

  20. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)

    Book  MATH  Google Scholar 

  21. Horn, A.: Logic with truth values in a linearly ordered Heyting algebra. Journal of Symbolic Logic 34(3), 395–409 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kechris, A.S.: Classical Descriptive Set Theory. Springer, Heidelberg (1995)

    Book  MATH  Google Scholar 

  23. Moschovakis, Y.N.: Descriptive set theory. Studies in Logic and the Foundations of Mathematics, vol. 100. North-Holland, Amsterdam (1980)

    MATH  Google Scholar 

  24. Ono, H.: Kripke models and intermediate logics. Publ. Res. Inst. Math. Sci., Kyoto Univ. 6, 461–476 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  25. Preining, N.: Complete Recursive Axiomatizability of Gödel Logics. PhD thesis, Vienna University of Technology, Austria (2003)

    Google Scholar 

  26. Rosenstein, J.G.: Linear Orderings. Academic Press, London (1982)

    MATH  Google Scholar 

  27. Takano, M.: Another proof of the strong completeness of the intuitionistic fuzzy logic. Tsukuba Journal of Mathematics 11(1), 101–105 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  28. Takeuti, G.: Proof Theory, 2nd edn. North-Holland, Amsterdam (1987)

    MATH  Google Scholar 

  29. Takeuti, G., Titani, S.: Intuitionistic fuzzy logic and intuitionistic fuzzy set theory. Journal of Symbolic Logic 49, 851–866 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  30. Winkler, R.: How much must an order theorist forget to become a topologist? In: Proc. of the Vienna Conference Contributions of General Algebra, Klagenfurt, Austria, vol. 12, pp. 420–433. Verlag Johannes Heyn (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Preining, N. (2010). Gödel Logics – A Survey. In: Fermüller, C.G., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2010. Lecture Notes in Computer Science, vol 6397. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16242-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16242-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16241-1

  • Online ISBN: 978-3-642-16242-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics