Skip to main content

An exact particle method for scalar conservation laws and its application to stiff reaction kinetics

  • Conference paper
  • First Online:
Meshfree Methods for Partial Differential Equations V

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 79))

Summary

An “exact” method for scalar one-dimensional hyperbolic conservation laws is presented. The approach is based on the evolution of shock particles, separated by local similarity solutions. The numerical solution is defined everywhere, and is as accurate as the applied ODE solver. Furthermore, the method is extended to stiff balance laws. A special correction approach yields a method that evolves detonation waves at correct velocities, without resolving their internal dynamics. The particle approach is compared to a classical finite volume method in terms of numerical accuracy, both for conservation laws and for an application in reaction kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Bukiet, J. Pelesko, X. L. Li, and P. L. Sachdev, A characteristic based numerical method for nonlinear wave equations, Computers Math. Applic., 31 (1996), pp. 75–79.

    Article  MATH  MathSciNet  Google Scholar 

  2. Clawpack. Website. http://www.clawpack.org.

  3. G. M. Coclite, M. Garavello, and B. Piccoli, Traffic flow on a road network, SIAM J. Math. Anal., 36 (2005), pp. 1862–1886.

    Article  MATH  MathSciNet  Google Scholar 

  4. R. Courant, K. Friedrichs, and H. Lewy, Über die partiellen Differenzengleichungen der mathematischen Physik, Mathematische Annalen, 100 (1928), pp. 32–74.

    Article  MATH  MathSciNet  Google Scholar 

  5. R. Courant, E. Isaacson, and M. Rees, On the solution of nonlinear hyperbolic differential equations by finite differences, Comm. Pure Appl. Math., 5 (1952), pp. 243–255.

    Article  MATH  MathSciNet  Google Scholar 

  6. J. R. Dormand and P. J. Prince, Runge-Kutta triples, Comp. Math. Appl., 12 (1986), pp. 1007–1017.

    Article  MATH  MathSciNet  Google Scholar 

  7. L. C. Evans, Partial differential equations, vol. 19 of Graduate Studies in Mathematics, American Mathematical Society, 1998.

    Google Scholar 

  8. H. Fan, S. Jin, and Z.-H. Teng, Zero reaction limit for hyperbolic conservation laws with source terms, J. Diff. Equations, 168 (2000), pp. 270–294.

    Article  MathSciNet  Google Scholar 

  9. Y. Farjoun and B. Seibold, Solving one dimensional scalar conservation laws by particle management, in Meshfree methods for Partial Differential Equations IV, M. Griebel and M. A. Schweitzer, eds., vol. 65 of Lecture Notes in Computational Science and Engineering, Springer, 2008, pp. 95–109.

    Google Scholar 

  10. Y. Farjoun and B. Seibold, An exactly conservative particle method for one dimensional scalar conservation laws, J. Comput. Phys., 228 (2009), pp. 5298–5315.

    Article  MATH  MathSciNet  Google Scholar 

  11. Y. Farjoun and B. Seibold, A rarefaction-tracking method for conservation laws, J. Eng. Math, 66 (2010), pp. 237–251.

    Article  MATH  MathSciNet  Google Scholar 

  12. W. Fickett and W. C. Davis, Detonation, Univ. of California Press, Berkeley, CA, 1979.

    Google Scholar 

  13. S. K. Godunov, A difference scheme for the numerical computation of a discontinuous solution of the hydrodynamic equations, Math. Sbornik, 47 (1959), pp. 271–306.

    MathSciNet  Google Scholar 

  14. A. Harten, B. Engquist, S. Osher, and S. Chakravarthy, Uniformly high order accurate essentially non-oscillatory schemes. III, J. Comput. Phys., 71 (1987), pp. 231–303.

    Article  MATH  MathSciNet  Google Scholar 

  15. C. Helzel, R. J. Leveque, and G. Warnecke, A modified fractional step method for the accurate approximation of detonation waves, SIAM J. Sci. Comput., 22 (2000), pp. 1489–1510.

    Article  MATH  MathSciNet  Google Scholar 

  16. M. Herty and A. Klar, Modelling, simulation and optimization of traffic flow networks, SIAM J. Sci. Comp., 25 (2003), pp. 1066–1087.

    Article  MATH  MathSciNet  Google Scholar 

  17. H. Holden, L. Holden, and R. Hegh-krohn, A numerical method for first order nonlinear scalar conservation laws in one dimension, Comput. Math. Appl., 15 (1988), pp. 595–602.

    Article  MATH  MathSciNet  Google Scholar 

  18. H. Holden and N. H. Risebro, A mathematical model of traffic flow on a network of unidirectional roads, SIAM J. Math. Anal., 26 (1995), pp. 999–1017.

    Article  MATH  MathSciNet  Google Scholar 

  19. H. Holden and N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, Springer, 2002.

    Google Scholar 

  20. P. D. Lax and B. Wendroff, Systems of conservation laws, Commun. Pure Appl. Math., 13 (1960), pp. 217–237.

    Article  MATH  MathSciNet  Google Scholar 

  21. R. J. Le Veque, Finite volume methods for hyperbolic problems, Cambridge University Press, first ed., 2002.

    Google Scholar 

  22. M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, vol. 229 of Proc. Roy. Soc. A, Piccadilly, London, 1955, pp. 317–345

    Google Scholar 

  23. X.-D. Liu, S. Osher, and T. Chan, Weighted essentially non-oscillatory schemes, J. Comput. Phys., 115 (1994), pp. 200–212.

    Article  MATH  MathSciNet  Google Scholar 

  24. L. Shampine and M. W. Reichelt, The MATLAB ODE suite, SIAM J. Sci. Comput., 18 (1997), pp. 1–22.

    Article  MATH  MathSciNet  Google Scholar 

  25. B. van Leer, Towards the ultimate conservative difference scheme II. Monotonicity and conservation combined in a second order scheme, J. Comput. Phys., 14 (1974), pp. 361–370.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support by the National Science Foundation. Y. Farjoun was supported by NSF grant DMS–0703937, and by the Spanish Ministry of Science and Innovation under grant FIS2008-04921–C02–01. B. Seibold was partially supported by NSF grant DMS–0813648.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yossi Farjoun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Farjoun, Y., Seibold, B. (2011). An exact particle method for scalar conservation laws and its application to stiff reaction kinetics. In: Griebel, M., Schweitzer, M. (eds) Meshfree Methods for Partial Differential Equations V. Lecture Notes in Computational Science and Engineering, vol 79. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16229-9_7

Download citation

Publish with us

Policies and ethics