Skip to main content

Sampling Inequalities and Support Vector Machines for Galerkin Type Data

  • Conference paper
  • First Online:
Meshfree Methods for Partial Differential Equations V

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 79))

  • 1312 Accesses

Summary

We combine the idea of sampling inequalities and Galerkin approximations of weak formulations of partial differential equations. The latter is a wellestablished tool for finite element analysis. We show that sampling inequalities can be interpreted as Pythagoras law in the energy norm of the weak form. This opens the way to consider regularization techniques known from machine learning in the context of finite elements. We show how sampling inequalities can be used to provide a deterministic worst case error estimate for reconstruction problems based on Galerkin type data. Such estimates suggest an a priori choice for regularization parameter(s).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.A. Adams, Sobolev Spaces, Pure and Applied Mathematics A (65), Academic Press, London, 1975.

    Google Scholar 

  2. R. Arcangéli, M.C. López di Silanes, and J.J. Torrens, An extension of a bound for functions in Sobolev spaces, with applications to (m, s)-spline interpolation and smoothing, Numer. Math. 107(2) (2007), 181–211.

    Article  MATH  MathSciNet  Google Scholar 

  3. K. Atkinson and W. Han, Theoretical numerical analysis. a functional analysis framework, Texts in applied mathematics, Springer, 2005.

    Google Scholar 

  4. S. Brenner and L. Scott, The Mathematical Theory of Finite Element Methods, Springer, New York, 1994.

    MATH  Google Scholar 

  5. J. Duchon, Sur l’erreur d’ interpolation des fonctions de plusieurs variables par les D m-splines., Rev. Française Automat. Informat. Rech. Opèr. Anal. Numer. 12 (1978), 325–334.

    MATH  MathSciNet  Google Scholar 

  6. F. Girosi, An equivalence between sparse approximation and support vector machines, Neural Computation 10 (8) (1998), 1455–1480.

    Article  Google Scholar 

  7. T. Hangelbroek, F. J. Narcowich, and J. D. Ward, Kernel approximation on manifolds i: Bounding the lebesgue constant, SIAM Journal on Mathematical Analysis 42 (2010), no. 4, 1732–1760.

    Article  Google Scholar 

  8. K. Jetter, J. Stöckler, and J. D. Ward, Norming stes and scattered data approximation on spheres, Approximation Theory IX, Vol. II: Computational Aspects, Vanderbilt University Press, 1998, 137–144.

    Google Scholar 

  9. Andrew Knyazev and Olof Widlund, Lavrentiev regularization + Ritz approximation = uniform finite element error estimates for differential equations with rough coefficients, Math. Comp. 72 (2003), no. 241, 17–40 (electronic). MR MR1933812 (2003i:65107)

    MATH  MathSciNet  Google Scholar 

  10. Q. T. Le Gia, Galerkin approximation for elliptic pdes on spheres, Journal of Approximation Theory 130 (2004), 123–147.

    Google Scholar 

  11. W. R. Madych, An estimate for multivariate interpolation II, J. Approx. Theory 142 (2006), 116–128.

    Article  MATH  MathSciNet  Google Scholar 

  12. F.J. Narcowich, J.D. Ward, and H. Wendland, Sobolev bounds on functions with scattered zeros, with applications to radial basis function surface fitting, Mathematics of Computation 74 (2005), 743–763.

    Article  MATH  MathSciNet  Google Scholar 

  13. P. Oswald, Frames and space splittings in hilbert spaces, Survey Lecture given at the Universities Bonn and Lancaster in 1997 available via http://www.faculty.jacobs-university.de/poswald, 1997.

  14. C. Rieger, Sampling inequalities and applications, Ph.D. thesis, Universität Göttingen, 2008.

    Google Scholar 

  15. C. Rieger, R. Schaback, and B. Zwicknagl, Sampling and stability, Mathematical Methods for Curves and Surfaces, Lecture Notes in Computer Science, vol. 5862, Springer, New York, 2010, pp. 347–369.

    Google Scholar 

  16. C. Rieger and B. Zwicknagl, Deterministic error analysis of support vector machines and related regularized kernel methods, Journal of Machine Learning Research 10 (2009), 2115–2132.

    MathSciNet  Google Scholar 

  17. R. Schaback and H. Wendland, Kernel Techniques: From Machine Learning to Meshless Methods, Acta Numerica 15 (2006), 543–639.

    Article  MATH  MathSciNet  Google Scholar 

  18. B Schölkopf and A.J. Smola, Learning with kernels - Support Vector Machines, Regularisation, and Beyond, MIT Press, Cambridge, Massachusetts, 2002.

    Google Scholar 

  19. G. Wahba, Spline Models for Observational Data, CBMS-NSF, Regional Conference Series in Applied Mathematics, Siam, Philadelphia, 1990.

    Google Scholar 

  20. H. Wendland, Meshless Galerkin methods using radial basis functions, Math. Comput. 68 (1999), 1521–1531.

    Article  MATH  MathSciNet  Google Scholar 

  21. H. Wendland, Scattered data approximation, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, 2005

    Google Scholar 

  22. H. Wendland and C. Rieger, Approximate interpolation, Numerische Mathematik 101 (2005), 643–662.

    MathSciNet  Google Scholar 

  23. D. Werner, Funktionalanalysis, Springer-Lehrbuch, Springer, Berlin, 2002.

    MATH  Google Scholar 

  24. D. X. Zhou, Derivative reproducing properties for kernel methods in learning theory, Journal of computational and Applied Mathematics 220 (2008), 456–463.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgement

The author would like to thank Barbara Zwicknagl and Robert Schaback many helpful and stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Rieger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rieger, C. (2011). Sampling Inequalities and Support Vector Machines for Galerkin Type Data. In: Griebel, M., Schweitzer, M. (eds) Meshfree Methods for Partial Differential Equations V. Lecture Notes in Computational Science and Engineering, vol 79. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16229-9_3

Download citation

Publish with us

Policies and ethics