Skip to main content

Coupling of the Navier-Stokes and the Boltzmann equations with a meshfree particle and kinetic particle methods for a micro cavity

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 79))

Summary

We present a coupling procedure of a meshfree particle method to solve the Navier-Stokes equations and a kinetic particle method, a variant of the Direct Simulation Monte Carlo(DSMC) method, to solve the Boltzmann equation. A 2D micro cavity problem has been simulated for different Knudsen numbers. An adaptive domain decomposition approach has been implemented with the help of a continuum breakdown criterion. The solutions from the Navier-Stokes equations and the coupling algorithm are compared with the ones from the Boltzmann equation. Moreover, it is shown that for larger Knudsen numbers, where the Navier-Stokes equations fail to predict the correct flow behaviors, its stationary solutions are still good candidate to initialize a Boltzmann solver. The CPU time for the coupling code is upto 5 times faster than the CPU time for the code solving Boltzmann equation for the same accuracy of the solutions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. Aktas, N. R. Aluru, A Combibed Continuum/DSMC Technique for Multiscale Analysis of Microfluidic Filters, J. Comput. Phys., 178 (2002) 342-372.

    Article  Google Scholar 

  2. H. Babovsky, A convergence proof for Nanbu’s Boltzmann simulation scheme, Eur. J. Mech., 8:41, 1989.

    Google Scholar 

  3. H. Babovsky, R. Illner, A convergence proof for Nanbu’s simulation method for the full Boltzmann equation. SIAM J. of Num. Anal., 26:45, 1989.

    Google Scholar 

  4. C. Bardos, F. Golse, D. Levermore, Fluid dynamic limits of kinetic equations. JSP 63 (1991) 323-344.

    MathSciNet  Google Scholar 

  5. G. A. Bird, Molecular Gas Dynamics and Direct Simulation of Gas Flows, Oxford University Press, New York, 1994.

    Google Scholar 

  6. I. D. Boyd, G. Chen, C. V. Candler, Predicting failure of the continuum continuum fluid equations in transitional hypersonic flows, Phys. Fluids, 7 (1995) 210.

    Google Scholar 

  7. R. Caflish. The fluid dynamical limit of the nonlinear Boltzmann equation. CPAM, 33:651, 1980.

    Google Scholar 

  8. C. Cercignani, R. Illner, M. Pulvirenti, The Mathematical Theory of Dilute Gases. Springer, 1994.

    Google Scholar 

  9. S. Chen, Weinan E, Y. Liu, C.-W. Shu, A discontinuous Galerkin implementation of a domain decomposition method for kinetic hydrodynamic coupling multiscale problems in gas dynamics and device simulations. J. Comput. Phys., 225 (2007) 1314-1330.

    Article  MATH  MathSciNet  Google Scholar 

  10. A. K. Chaniotis, D. Poulikakos, P. Koumoutsakos, Remeshed Smoothed Particle Hydrodynamics for the Simulation of Viscous and Heat Conducting Flows, J. Comput. Phys. 182 (2002) 67-90.

    Article  MATH  Google Scholar 

  11. P. Degond, G. Dimarco, L. Mieussens, A moving interface method for dynamic kinetic-fluid coupling, J. Comput. Phys. 227 (2007) 1176-1208.

    Article  MathSciNet  Google Scholar 

  12. M. Gad-el Hak, The Fluid Mechanics of Microdevices - The Freeman Scholar Lecture, ASME J. Fluids Engs., 121(403), 5-33, 1999.

    Article  Google Scholar 

  13. R. A. Gingold, J. J. Monaghan, Smoothed Particle Hydrodynamics: theory and application to non-spherical stars, Mon. Not. Roy. Astron. Soc. 181 (1977) 375-389.

    MATH  Google Scholar 

  14. A. L. Gracia, B. J. Alder, Generation of the Chapmann-Enskog Distribution, J. Comput. Phys. 140 (1998) 66-70.

    Article  MathSciNet  Google Scholar 

  15. A. L. Gracia, J. B. Bell, W. Y. Crutchfield, B. J. Adler, Adaptive mesh and algorithm refinement using direct simulation Monte Carlo, J. Comput. Phys., 154 (1999) 134.

    Article  Google Scholar 

  16. A. Klar, Domain Decomposition for Kinetic Problems with Noneqilibrium States, Eur. J. Mech., B/Fluids, 15, 2, (1996) 203-216.

    MATH  MathSciNet  Google Scholar 

  17. V.I. Kolobov, R.R. Arslanbekov, V.V. Aristov, A.A. Frolova, S.A. Zabelok, Unified solver for rarefied and continuum flows with adaptive mesh and algorithm refinement, J. Comput. Phys. 223 (2) (2007) 589-608.

    Article  MATH  Google Scholar 

  18. P. Le Tallec, F. Mallinger, Coupling Boltzmann and Navier-Stokes equations by half fluxes, J. Comput. Phys. 136, (1997) 51-67.

    Article  MathSciNet  Google Scholar 

  19. D. Levermore, W. J. Morokoff, B. T. Nadiga, Moment realizability and the validity of the Navier-Stokes equations for rarefied gas dynamics, Phys. Fluids 10 (12) (1998).

    Google Scholar 

  20. S. Mizzi, D. R. Emerson, S. K. Stefanov, R. W. Barber, J. M. Reese, Effects of Rarefaction on Cavity Flow in the slip regime, J. Comp. Theor. Nanoscience, Vol. 4, No. 4, 817-622, 2007.

    Google Scholar 

  21. H. Neunzert and J. Struckmeier, Particle methods for the Boltzmann equation. Acta Numerica, page 417, 1995.

    Google Scholar 

  22. S. Narris, D. Valougeorgis, The driven cavity flow over the whole range of the Knudsen number, Phys. of Fluids, 17, 097106, 2005.

    Google Scholar 

  23. Y. Sone, Molecular Gas Dynamics, Theory, Techniques and Applications, Birkhaueser, 2007.

    Book  MATH  Google Scholar 

  24. J. Stoer and R. Bulirsch, Introduction to numerical analysis; Spring-Verlag, New York (1980)

    Google Scholar 

  25. Q. Sun, I. D. Boyd, G. V. Candler, A hybrid continuum/particle approach for modeling subsonic, rarefied gas flows, J. Comput Phys. 194 (2004) 256-277.

    Article  MATH  Google Scholar 

  26. J. C. Tannehill, T. L. Holst, J. V. Rakich, Numerical computation of twodimensional viscous blunt body flows with an impinging shock; AIAA Paper 75-0154, AIAA 13th Aerospace Sciences Meeting, 1975.

    Google Scholar 

  27. S. Tiwari, Coupling of the Boltzmann and Euler equations with automatic domain decomposition, J. Comput. Phys. 144 (1998) 710-726.

    Article  MATH  MathSciNet  Google Scholar 

  28. S. Tiwari, A LSQ-SPH Approach for Solving Compressible Viscous Flows, International Serier of Numerical Mathematics, 141, Freistüler and Warnecke (Eds), Birkhäuser, 2001.

    Google Scholar 

  29. S. Tiwari, A. Klar, An adaptive domain decomposition procedure for Boltzmann and Euler equations, J. Comput. Appl. Math. 90, 233, 1998.

    Article  MathSciNet  Google Scholar 

  30. S. Tiwari, A. Klar, S. Hardt, A particle-particle hybrid method for kinetic and continuum equations, J. Comput. Phys., 228, 7109-7124, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  31. S. Tiwari and J. Kuhnert, Finite pointset method based on the projection method for simulations of the incompressible Navier-Stokes equations, (M. Griebel and M. A. Schweitzer, eds.), Lecture Notes in Computational Science and Engineering, vol. 26, Springer, 2002, pp. 373–387.

    Google Scholar 

  32. S. Tiwari and J. Kuhnert, A numerical scheme for solving incompressible and low Mach number flows by Finite Pointset Method, (M. Griebel and M. A. Schweitzer, eds.), Lecture Notes in Computational Science and Engineering, vol. 43, Springer, 2005, pp. 191–206.

    Google Scholar 

  33. S. Tiwari et al, A Meshfree Method for Simulations of Interactions between Fluids and Flexible Structures, (M. Griebel and M. A. Schweitzer, eds.), Lecture Notes in Computational Science and Engineering, vol. 57, Springer, 2006, pp. 249–264.

    Google Scholar 

  34. S. Tiwari, S. Manservisi, Modeling Incompressible Navier-Stokes flows by least squares approximation. The Nepali Math. Sci. Report, Vol. 20, No. 1 &2, 2002.

    Google Scholar 

  35. H. S. Wijesinghe, N. G. Hadjiconstantinou, A discussion of hybrid atomisticcontinuum methods for multiscale hydrodynamics, Int. J. Multiscale Comput. Eng. 2 (2004) 189.

    Google Scholar 

Download references

Acknowledgment

This work was supported by the German Research Foundation (DFG), KL 1105/17-1. We would like to thank the (DFG) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudarshan Tiwari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tiwari, S., Klar, A. (2011). Coupling of the Navier-Stokes and the Boltzmann equations with a meshfree particle and kinetic particle methods for a micro cavity. In: Griebel, M., Schweitzer, M. (eds) Meshfree Methods for Partial Differential Equations V. Lecture Notes in Computational Science and Engineering, vol 79. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16229-9_10

Download citation

Publish with us

Policies and ethics