Skip to main content

Virtuelle Realität in der Medizin

  • Chapter
Medizintechnik
  • 24k Accesses

Zusammenfassung

Die rasanten Entwicklungen, die sich in den letzten 20 Jahren vollzogen haben, haben die Chirurgie maßgeblich verändert, und sie wird unvermeidlich noch größere Änderungen in den nächsten Jahren erfahren. Die Chirurgie wird zunehmend technologiebasiert.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literatur

  • Ahn B, Kim J (2010) Measurement and characterization of soft tissue behavior with surface deformation and force response under large deformations. Medical Image Analysis, vol 14, no 2, pp 138–148

    Article  MathSciNet  Google Scholar 

  • Akenine-Möller T et al. (2008) Real-Time Rendering. 3rd ed. A.K. Peters Ltd., Natick (Massachusetts)

    Google Scholar 

  • Basdogan C et al. (2004) Haptics in minimally invasive surgical simulation and training. IEEE Computer Graphics and Applications, vol 24, No. 2, pp 56–64

    Article  Google Scholar 

  • Basdogan C (2007) Virtual Reality Supported Simulators for Training in Minimally Invasive Surgery. IEEE Computer Graphics and Applications, vol 27, No. 2, pp. 54–66

    Article  Google Scholar 

  • Bockholt U et al. (2006) Simulation zur Stimulation von Kopfbewegungen zur VR gestützten Schleudertraumatherapie. Proceedings of 17th Simulation and Visualization Conference, Magdeburg

    Google Scholar 

  • Bockholt U et al. (2008) Visuelles und haptisches Volumenrendering von medizinischen Bilddaten in Virtual Reality-Simulationen. In: Schenk M (Hrsg) 11. IFRA/issenschaftstage 2008. Tagungsband [CD-ROM], S 31–37

    Google Scholar 

  • Boissonnat JD (1985) Shape reconstruction from planar cross-sections. Proceedings of IEEE Conf Computer Vision and Pattern Recognition, pp 393–397

    Google Scholar 

  • Bürger T et al. (2006) Evaluation of target scores and benchmarks for the traversal task scenario of the minimally invasive surgical trainer-virtual reality (MIST-VR) laparoscopy simulator. Surg Enclose, vol 20, no 4, pp 645–650

    Article  Google Scholar 

  • Coles TR et al. (2010) The Role of Haptics in Medical Training Simulators: A Survey of the State-of-the-art. IEEE Transactions on Haptics, preprint

    Google Scholar 

  • Cotin S et a. (1996) Geometric and physical representations for a simulator of hepatic surgery. Stud Health Technol Inform, vol 29, pp 139–151

    Google Scholar 

  • Daenzer S et al. (2007) Real-time smoke and bleeding simulation in virtual surgery. Stud Health Technol Inform, vol 125, pp 94–99

    Google Scholar 

  • Dold C et al. (2007) Segmentation and Navigation Support of Clinical Data Sets to Simulate the Bronchoscopy and Rhinoscopy. In: Buzug TM (ed) Advances in Medical Engineering. Springer, Berlin Heidelberg New York, pp 145–150

    Chapter  Google Scholar 

  • Drechsler K et al. (2010) Semi-Automatic Anatomical Tree Matching for Landmark-Based Elastic Registration of Liver Volumes. Journal of Healthcare Engineering 1:101–123

    Article  Google Scholar 

  • EncarnacciQ JL et al. (1994) Virtual reality technology - enabling new dimensions in computer-supported applications. Proceedings 9. Japan-Germany Forum on Information Technology, Oita, Japan, 8.-11. November

    Google Scholar 

  • Erdt M, Sakas G (2010) Computer aided segmentation of kidneys using locally shape constrained deformable models on CT images. Proceedings of SPIE Medical Imaging 2010, vol 7624, pp 762419-762419-8

    Google Scholar 

  • Gallagher AG et al. (2004) Discriminative validity of the Minimally Invasive Surgical Trainer in Virtual Reality (MIST-VR) using criteria levels based on expert performance. Surgical Endoscopy 18: 660–665

    Article  Google Scholar 

  • Gallagher AG et al. (2005) Virtual reality simulation for the operating room: Proficiency-based training as a paradigm shift in surgical skills training. Annals of Surgery 241 (2): 364–372

    Article  Google Scholar 

  • Geiger B, Kikinis R (1995) Simulation of Endoscopy. In: Ayache N (ed) Proceedings of Computer Vision, Virtual Reality and Robotics in Medicine, Lecture Notes in Computer Science. Springer, Berlin Heidelberg New York Tokyo, pp 277–281

    Chapter  Google Scholar 

  • Hackethal A et al. (2006) Evaluation of target scores and benchmarks for the traversal task scenario of the minimally invasive surgical trainer-virtual reality (MIST-VR) laparoscopy simulator. Surgical Endoscopy, DOI: 10.1007/s00464-005-0190-x, Issue: Online First

    Google Scholar 

  • Hu T et al. (2004) Evaluation of a laparoscopic grasper with force feedback. Surgical Endoscopy, DOI: 10.1007/s00464-003-8132-y, Issue: Online First

    Google Scholar 

  • Höhne KH (2004) Computer-based anatomy: A prerequisite for computer-assisted radiology and surgery. In: Lemke HU et al. (eds) Computer Assisted Radiology and Surgery, Proc. CARS 2004, International Congress Series 1268, Elsevier, Amsterdam, pp xv–xviii

    Google Scholar 

  • Höhne KH et al. (2009) VOXEL-MAN 3D Navigator: Brain and Skull. Regional, Functional and Radiological Anatomy, Version 2.0. Springer-Verlag Electronic Media, Heidelberg

    Google Scholar 

  • Hyltander A et al. (2002) The transfer of basic skills learned in a laparoscopic simulator to the operating room. Surgical Endoscopy 16(9): 1324–1328

    Article  Google Scholar 

  • Kaufman A et al. (2005) Virtual Colonoscopy. Communications of the ACM 48(2): 37–41

    Article  MathSciNet  Google Scholar 

  • Kahol K et al. (2009) Effect of short-term pretrial practice on surgical proficiency in simulated environments: a randomized trial of the »preoperative warm-up« effect. J Am Coll Surg 208(2): 255–268

    Article  Google Scholar 

  • Khan M et al. (2005) Accuracy of biopsy needle navigation using the Medarpa system-computed tomography reality superimposed on the site of intervention. European Radiology 15(11): 2366–2374

    Article  Google Scholar 

  • Kühnapfel U etal. (1995) Endosurgery simulations with KISMET. Virtual Reality World '95, Stuttgart

    Google Scholar 

  • Kohn LT et al. (2000) To Err Is Human: Building a Safer Health System. Committee on Quality of Health Care in America, Institute of Medicine. The National Academies Press, Washington, DC

    Google Scholar 

  • Krüger A et al. (2008) Sinus Endoscopy - Application of Advanced GPU Volume Rendering for Virtual Endoscopy. IEEE Transactions on Visualization and Computer Graphics, vol 14, no 6:1491–1498

    Article  Google Scholar 

  • Langreth R (2005) Fixing Hospitals. Forbes Magazine 175(13): 68–76

    Google Scholar 

  • Levinski Ketal. (2009) Interactive Surface-guided Segmentation of Brain MRI Data. Computer in Biology and Medicine 39(12): 1153–1160

    Article  Google Scholar 

  • Lipner R et al. (2010) A Technical and Cognitive Skills Evaluation of Performance in Interventional Cardiology Procedures Using Medical Simulation. The Journal of the Society for Simulation in Healthcare 5(2): 65–74

    Article  Google Scholar 

  • Maschuw K et al. (2008) The impact of self-belief on laparoscopic performance of novices and experienced surgeons. World J Surg 32(9): 1911–1916

    Article  Google Scholar 

  • Meglan AM et al. (1996) The teleos virtual environment toolkit for simulation-based surgical education. Studies in Health Technology and Informatics, IOS Press, Amsterdam, vol 29, pp 346–351

    Google Scholar 

  • Milgram P, Kishino AF (1994) Taxonomy of Mixed Reality Visual Displays. IEICE Transactions on Information and Systems E77-D(12): 1321–1329

    Google Scholar 

  • Müller M et al. (2004) Interactive blood simulation for virtual surgery based on smoothed particle hydrodynamics. Journal of Technology and Health Care 12(1): 25–31

    Google Scholar 

  • Müller W (1995) Virtual reality in surgical arthroscopic training. Journal of Image Guided Surgery I(5): 288–294

    Article  Google Scholar 

  • Müller W et al. (2000) Computer assisted preoperative planning system for total knee replacement. Proceedings of Fourth Annual North American Program on Computer Assisted Orthopaedic Surgery (CAOS USA 2000). Pittsburgh, Pennsylvania, USA, pp 105–107

    Google Scholar 

  • Müller-Wittig W et al. (2001) Enhanced training environment for minimally invasive surgery. Proceedings of the 10th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises -WET ICE 2001, MIT Cambridge, Massachusetts, USA, IEEE Computer Society, Los Alamitos, California, pp 269–272

    Book  Google Scholar 

  • Müller-Wittig W et al. (2002) A new approach to combine visualization and simulation for preoperative planning of pedicle screw insertion. Proceedings Computer Assisted Orthopaedic Surgery -CAOS International, Santa Fe, New Mexico, USA, pp 53–55

    Google Scholar 

  • Novak EJ et al. (2007) The Cost-Effectiveness of Computer-Assisted Navigation in Total Knee Arthroplasty. J Bone Joint Surg Am 89: 2389–2397

    Article  Google Scholar 

  • nVidia (2009) NVIDIA'S Next Generation CUDA Compute Architecture: Fermi www.nvidia.com/content/PDF/fermi_white_papers/NVIDIAFermiComputeArchitectureWhitepaper.pdf

  • Okamura AM (2009) Haptic feedback in robot-assisted minimally invasive surgery. Curr Opin Urol 9(1): 102–107

    Article  Google Scholar 

  • Ottensmeyer MP (2002) In vivo measurement of solid organ visco-elastic properties. In: Westwood JD (ed) Proceedings of »Medicine Meets Virtual Reality 02/10« - Digital upgrades: Applying Moore's law to health, Newport Beach/CA. IOS Press, Amsterdam, pp 328–333

    Google Scholar 

  • Peterlik I et al. (2010) Real-time Visio-Haptic Interaction with Static Soft Tissue Models Having Geometric and Material Nonlinearity. Computers and Graphics 34(1): 43–54

    Article  Google Scholar 

  • Salkini MW et al. (2010) The Role of Haptic Feedback in Laparoscopic Training Using the LapMentor II. Journal of Endourology Volume 24(1): 99–102

    Article  Google Scholar 

  • Satava RM (1993) Virtual reality surgical simulator. The first steps. Surgical Endoscopy 7(3): 203–205

    Article  Google Scholar 

  • Satava RM (1995) Virtual reality, telesurgery, and the new world order of medicine. Journal of Image Guided Surgery 1:12–16

    Article  Google Scholar 

  • Satava RM (1996) Medical virtual reality. The current status of the future. Stud Health Technol Inform 29:100–106

    Google Scholar 

  • Satava, RM, Robb RA (1997) Virtual endoscopy: application of 3D visualization to medical diagnosis. Presence -Teleoperators and Virtual Environments. Massachusetts, vol 6, no 2, pp 179–197

    Google Scholar 

  • Satava RM (2009) The Revolution in Medical Education - The Role of Simulation. Journal of Graduate Medical Education 1(2): 172–175

    Article  Google Scholar 

  • Sedef M et al. (2006) Real-time Finite-Element Simulation of Linear Viscoelastic Tissue Behavior Based on Experimental Data. IEEE Computer Graphics and Applications, vol 26, no 5, pp 58–68

    Article  Google Scholar 

  • Seymour NE et al. (2002) Virtual reality training improves operating room performance: Results of a randomized, double-blinded study. Annals of Surgery 236(4): 458–464

    Article  MathSciNet  Google Scholar 

  • Spitzer V et al. (1996) The visible Human Male: A Technical Report. J Am Med Inform Assoc 3(2): 118–130

    Article  MathSciNet  Google Scholar 

  • Tay BK et al. (2002) Measurement of in vivo force response of intra-abdominal soft tissues for surgical simulation. In: Westwood JD (ed) Proceedings of »Medicine Meets Virtual Reality 02/10« - Digital upgrades: Applying Moore's law to health, Newport Beach/CA. IOS Press, Amsterdam, pp 514–519

    Google Scholar 

  • Taylor ZA et al. (2009) On modelling of anisotropic viscoelasticity for soft tissue simulation: numerical solution and GPU execution. Medical Image Analysis 13(2): 234–244

    Article  Google Scholar 

  • Teber et al. (2009) Augmented Reality: A New Tool To Improve Surgical Accuracy during Laparoscopic Partial Nephrectomy? Preliminary In Vitro and In Vivo Results. European Urology 56(2): 332–338

    Article  Google Scholar 

  • Wesarg S et al. (2004) Accuracy of needle implantation in brachythe-rapy using a medical AR system: a phantom study. Proceedings of Medical Imaging 2004, SPIE Medical Imaging Symposium 2004. San Diego, CA, USA, pp 341–352

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Müller-Wittig, W. (2011). Virtuelle Realität in der Medizin. In: Kramme, R. (eds) Medizintechnik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16187-2_52

Download citation

Publish with us

Policies and ethics