Skip to main content

The Complexity of the Gapped Consecutive-Ones Property Problem for Matrices of Bounded Maximum Degree

  • Conference paper
Comparative Genomics (RECOMB-CG 2010)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6398))

Included in the following conference series:

Abstract

The Gapped Consecutive-Ones Property (C1P) Problem, or the (k,δ)-C1P Problem is: given a binary matrix M and integers k and δ, decide if the columns of M can be ordered such that each row contains at most k blocks of 1’s, and no two neighboring blocks of 1’s are separated by a gap of more than δ 0’s. This problem was introduced in [3]. The classical polynomial-time solvable C1P Problem is equivalent to the (1,0)-C1P problem. It has been shown that for every unbounded or bounded k ≥ 2 and unbounded or bounded δ ≥ 1, except when (k,δ) = (2,1), the (k,δ)-C1P Problem is NP-complete [10,6].

In this paper we study the Gapped C1P Problem with a third parameter d, namely the bound on the maximum number of 1’s in any row of M, or the bound on the maximum degree of M. This is motivated by problems in comparative genomics and paleogenomics, where the genome data is often sparse [4]. The (d,k,δ)-C1P Problem has been shown to be polynomial-time solvable when all three parameters are fixed [3]. Since fixing d also fixes k (k ≤ d), the only case left to consider is the case when δ is unbounded, or the (d,k, ∞ )-C1P Problem. Here we show that for every d > k ≥ 2, the (d,k, ∞ )-C1P Problem is NP-complete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alizadeh, F., Karp, R., Weisser, D., Zweig, G.: Physical mapping of chromosomes using unique probes. J. Comput. Biol. 2(2), 159–184 (1995)

    Article  CAS  PubMed  Google Scholar 

  2. Chauve, C., Haus, U.W., Stephen, T., You, V.P.: Minimal conflicting sets for the consecutive-ones property in ancestral genome reconstruction. In: Ciccarelli, F.D., Miklós, I. (eds.) RECOMB-CG 2009. LNCS (LNBI), vol. 5817, pp. 48–58. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Chauve, C.: Maňuch, J., Patterson, M.: On the gapped consecutive-ones property. In: Proc. of European Conference on Combinatorics, Graph Theory and Applications (EUROCOMB). ENDM, vol. 34, pp. 121–125 (2009)

    Google Scholar 

  4. Chauve, C., Tannier, E.: A methodological framework for the reconstruction of contiguous regions of ancestral genomes and its application to mammalian genomes. PLoS Comput. Biol. 4, e1000234 (2008)

    Google Scholar 

  5. Dom, M.: Recognition, generation, and application of binary matrices with the consecutive-ones property. Ph.D. thesis, Institut für Informatik, Friedrich-Schiller-Universität, Jena (2008)

    Google Scholar 

  6. Goldberg, P., Golumbic, M., Kaplan, H., Shamir, R.: Four strikes against physical mapping of DNA. J. Comput. Biol. 2(1), 139–152 (1995)

    Article  CAS  PubMed  Google Scholar 

  7. Gupta, A., Maňuch, J., Stacho, L., Zhao, X.: Algorithm for haplotype inferring via galled-tree networks with simple galls. In: Măndoiu, I.I., Zelikovsky, A. (eds.) ISBRA 2007. LNCS (LNBI), vol. 4463, pp. 121–132. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Gupta, A., Maňuch, J., Stacho, L., Zhao, X.: Haplotype inferring via galled-tree networks is NP-complete. In: Hu, X., Wang, J. (eds.) COCOON 2008. LNCS, vol. 5092, pp. 287–298. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Gupta, A., Maňuch, J., Stacho, L., Zhao, X.: Haplotype inferring via galled-tree networks using a hypergraph covering problem for special genotype matrices. Discr. Appl. Math. 157(10), 2310–2324 (2009)

    Article  Google Scholar 

  10. Maňuch, J., Patterson, M., Chauve, C.: Hardness results for the gapped C1P problem (unpublished manuscript)

    Google Scholar 

  11. McConnell, R.M.: A certifying algorithm for the consecutive-ones property. In: Proc. of Symposium on Discrete Algorithms (SODA), pp. 761–770. SIAM, Philadelphia (2004)

    Google Scholar 

  12. Papadimitriou, C.: Computational Complexity. Addison-Wesley, Reading (1994)

    Google Scholar 

  13. Saxe, J.B.: Dynamic-programming algorithms for recognizing small-bandwidth graphs in polynomial time. SIAM J. on Alg. and Discr. Meth. 1(4), 363–369 (1980)

    Article  Google Scholar 

  14. Tucker, A.C.: A structure theorem for the consecutive 1’s property. J. of Comb. Theory, Series B 12, 153–162 (1972)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maňuch, J., Patterson, M. (2010). The Complexity of the Gapped Consecutive-Ones Property Problem for Matrices of Bounded Maximum Degree. In: Tannier, E. (eds) Comparative Genomics. RECOMB-CG 2010. Lecture Notes in Computer Science(), vol 6398. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16181-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16181-0_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16180-3

  • Online ISBN: 978-3-642-16181-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics