Skip to main content

A Logic for Conceptual Hierarchies

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6404))

Abstract

We propose a proof-theoretical way of obtaining detailed and precise information on conceptual hierarchies. The notion of concept finding proof, which represents a hierarchy of concepts, is introduced based on a substructural logic with mingle and strong negation. Mingle, which is a structural inference rule, is used to represent a process for finding a more general (or specific) concept than some given concepts. Strong negation, which is a negation connective, is used to represent a concept inverse operator. The problem for constructing a concept finding proof is shown to be decidable in PTIME.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, A.R., Belnap Jr., N.D.: Entailment: The logic of relevance and necessity, vol. 1. Princeton University Press, Princeton (1975)

    MATH  Google Scholar 

  2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The description logic handbook: Theory, implementation and applications. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  3. Nelson, D.: Constructible falsity. Journal of Symbolic Logic 14, 16–26 (1949)

    Article  MATH  Google Scholar 

  4. Ganter, B., Wille, R.: Formal concept analysis: Mathematical foundations. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  5. Davey, B.A., Priestley, H.A.: Introduction to lattice and order, 2nd edn. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  6. Kamide, N.: Relevance principle for substructural logics with mingle and strong negation. Journal of Logic and Computation 12(6), 913–928 (2002)

    Article  MATH  Google Scholar 

  7. Kamide, N.: Substructural logic with mingle. Journal of Logic, Language and Information 11(2), 227–249 (2002)

    Article  MATH  Google Scholar 

  8. Kamide, N.: Linear logics with communication-merge. Journal of Logic and Computation 15(1), 3–20 (2005)

    Article  MATH  Google Scholar 

  9. Ohnishi, M., Matsumoto, K.: A system for strict implication. Annals of the Japan Association for Philosophy of Science 2(4), 183–188 (1964)

    Article  MATH  Google Scholar 

  10. Wansing, H.: The Logic of Information Structures. LNCS, vol. 681, 163 pages. Springer, Heidelberg (1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kamide, N. (2010). A Logic for Conceptual Hierarchies. In: da Rocha Costa, A.C., Vicari, R.M., Tonidandel, F. (eds) Advances in Artificial Intelligence – SBIA 2010. SBIA 2010. Lecture Notes in Computer Science(), vol 6404. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16138-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16138-4_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16137-7

  • Online ISBN: 978-3-642-16138-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics