Advertisement

High-Level Modeling of Component-Based CSPs

  • Raphaël Chenouard
  • Laurent Granvilliers
  • Ricardo Soto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6404)

Abstract

Most of modern constraint modeling languages combine rich constraint languages with mathematical notations to tackle combinatorial optimization problems. Our purpose is to introduce new component-oriented language constructs to manipulate hierarchical problems, for instance for modeling engineering system architectures with conditional sub-problems. To this end, an object-oriented modeling language is associated with a powerful constraint language. It offers the possibility of defining conditional components to be activated at solving time, declaring polymorphic components whose concrete types have to be determined, and overriding model elements. We illustrate the benefits of this new approach in the modeling process of a difficult embodiment design problem having several architectural alternatives.

Keywords

Heat Exchanger Constraint Programming Constraint Satisfaction Problem Compatibility Constraint Embodiment Design 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chenouard, R., Granvilliers, L., Soto, R.: Model-Driven Constraint Programming. In: Proceedings of ACM SIGPLAN PPDP, pp. 236–246. ACM Press, New York (2008)Google Scholar
  2. 2.
    Chenouard, R., Granvilliers, L., Soto, R.: Rewriting Constraint Models with Metamodels. In: Proceedings of SARA, pp. 42–49. AAAI Press, Menlo Park (2009)Google Scholar
  3. 3.
    Chenouard, R., Sébastian, P., Granvilliers, L.: Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 18–32. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Frisch, A.M., Harvey, W., Jefferson, C., Martínez Hernández, B., Miguel, I.: Essence: A constraint language for specifying combinatorial problems. Constraints 13(3), 268–306 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Gelle, E., Faltings, B.: Solving Mixed and Conditional Constraint Satisfaction Problems. Constraints 8, 107–141 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Geller, F., Veksler, M.: Assumption-Based Pruning in Conditional CSP. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 241–255. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Jayaraman, B., Tambay, P.: Modeling Engineering Structures with Constrained Objects. In: Krishnamurthi, S., Ramakrishnan, C.R. (eds.) PADL 2002. LNCS, vol. 2257, pp. 28–46. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Junker, U.: Configuration. In: Handbook of Constraint Programming, pp. 837–873. Elsevier, Amsterdam (2006)CrossRefGoogle Scholar
  9. 9.
    Marriott, K., Nethercote, N., Rafeh, R., Stuckey, P.J., de la Banda, G., Wallace, M.: The Design of the Zinc Modelling Language. Constraints 13(3), 229–267 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Mouhoub, M., Sukpan, A.: Managing Conditional and Composite CSPs. In: Kobti, Z., Wu, D. (eds.) Canadian AI 2007. LNCS (LNAI), vol. 4509, pp. 216–227. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: Towards A Standard CP Modelling Language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    O’Sullivan, B.A.: Constraint-Aided Conceptual Design. Professional Engineering Publishing (2001)Google Scholar
  13. 13.
    Sabin, D., Freuder, E.C.: Configuration as Composite Constraint Satisfaction. In: Proceedings of AI and MRP Workshop, pp. 153–161. AAAI Press, Menlo Park (1996)Google Scholar
  14. 14.
    Sabin, M., Freuder, E.C., Wallace, R.J.: Greater Efficiency for Conditional Constraint Satisfaction. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 649–663. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Soto, R., Granvilliers, L.: The Design of COMMA: An Extensible Framework for Mapping Constrained Objects to Native Solver Models. In: Proceedings of ICTAI, pp. 243–250. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  16. 16.
    Van Hentenryck, P.: The OPL Optimization Programming Language. The MIT Press, Cambridge (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Raphaël Chenouard
    • 1
  • Laurent Granvilliers
    • 2
  • Ricardo Soto
    • 3
  1. 1.IRCCYNEcole Centrale de NantesFrance
  2. 2.LINACNRS, Université de NantesFrance
  3. 3.Escuela de Ingeniería InformáticaPontificia Universidad Católica de ValparaísoChile

Personalised recommendations