Skip to main content

Feasible UAV Path Planning Using Genetic Algorithms and Bézier Curves

  • Conference paper
Advances in Artificial Intelligence – SBIA 2010 (SBIA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6404))

Included in the following conference series:

Abstract

With the growing in the use of UAVs (Unmanned Aerial Vehicles), it is necessary to develop techniques that allow the generation of feasible paths for these vehicles. These paths take into account the nonholonomic constraints intrinsic to UAVs, such as minimum curvature, minimum torsion and maximum climb (or dive) angle. Thus, this paper proposes the use of genetic algorithms to generate paths for these vehicles in the three-dimensional space, using Bézier curves with several advantages. We consider all these three constraints in order to generate a feasible path for a small fixed-wing aircraft with severe limitations. We show results for this vehicle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Siegwart, R., Nourbakhsh, I.R.: Introduction to Autonomous Mobile Robots. MIT Press, Cambridge (2004)

    Google Scholar 

  2. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  3. Dubins, L.E.: On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents. American Journal of Mathematics 79, 497–516 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kuwata, Y., Richards, A., Schouwenaars, T., How, J.P.: Robust Constrained Receding Horizon Control for Trajectory Planning. In: Proceedings of the AIAA Guidance, Navigation and Control Conference (2005)

    Google Scholar 

  5. Wzorek, M., Doherty, P.: Reconfigurable Path Planning for an Autonomous Unmanned Aerial Vehicle. In: International Conference on Hybrid Information Technology, ICHIT 2006, pp. 242–249 (November 2006)

    Google Scholar 

  6. Bortofi, S.A.: Path Planning for UAVs. In: Proceedings of the American Control Conference (2000)

    Google Scholar 

  7. Dogan, A.: Probabilistic Path Planning for UAVs. In: Proceedings of 2nd AIAA Unmanned Unlimited Systems, Technologies, and Operations (2003)

    Google Scholar 

  8. Cheng, P., Shen, Z., Lavalle, S.M.: RRT-Based Trajectory Design for Autonomous Automobiles and Spacecraft. Archives of Control Sciences 11(3-4), 167–194 (2001)

    MathSciNet  MATH  Google Scholar 

  9. Nikolos, I., Valavanis, K., Tsourveloudis, N., Kostaras, A.: Evolutionary algorithm based offine/online path planner for UAV navigation. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 33(6), 898–912 (2003)

    Article  Google Scholar 

  10. Hasircioglu, I., Topcuoglu, H.R., Ermis, M.: 3-d path planning for the navigation of unmanned aerial vehicles by using evolutionary algorithms. In: GECCO 2008: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, pp. 1499–1506. ACM, New York (2008)

    Google Scholar 

  11. de la Cruz, J.M., Besada-Portas, E., Torre-Cubillo, L., Andres-Toro, B., Lopez- Orozco, J.A.: Evolutionary path planner for uavs in realistic environments. In: GECCO 2008: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, pp. 14–77. ACM, New York (2008)

    Google Scholar 

  12. Pehlivanoglu, Y.V., Baysal, O., Hacioglu, A.: Path planning for autonomous UAV via vibrational genetic algorithm. Aircraft Engineering and Aerospace Technology: An International Journal 79(8), 352–359 (2007)

    Article  Google Scholar 

  13. Kreyszig, E.: Differential Geometry, vol. 1. Dover Publications, New York (1991)

    MATH  Google Scholar 

  14. Farouki, R.T., Han, C.Y.: Algorithms for Spatial Pythagorean-Hodograph Curves. In: Geometric Properties for Incomplete Data, pp. 43–58 (2006)

    Google Scholar 

  15. Farouki, R.T.: The Elastic Bending Energy of Pythagorean Hodograph Curves. Comput. Aided Geom. Design 13, 227–241 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Alves Neto, A., Campos, M.F.M.: On the generation of feasible paths for aerial robots with limited climb angle. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2009), Kobe, Japan (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Macharet, D.G., Neto, A.A., Campos, M.F.M. (2010). Feasible UAV Path Planning Using Genetic Algorithms and Bézier Curves. In: da Rocha Costa, A.C., Vicari, R.M., Tonidandel, F. (eds) Advances in Artificial Intelligence – SBIA 2010. SBIA 2010. Lecture Notes in Computer Science(), vol 6404. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16138-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16138-4_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16137-7

  • Online ISBN: 978-3-642-16138-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics