Advertisement

A Dijkstra Algorithm for Fixed-Wing UAV Motion Planning Based on Terrain Elevation

  • Felipe Leonardo Lôbo Medeiros
  • José Demisio Simões da Silva
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6404)

Abstract

The automatic motion or trajectory planning is essential for several tasks that lead to the autonomy increase of Unmanned Aerial Vehicles (UAVs). This work proposes a Dijkstra algorithm for fixed-wing UAVs trajectory planning. The navigation environments are represented by sets of visibility graphs constructed through the terrain elevations of these environments. Digital elevation models are used to represent the terrain elevations. A heuristics to verify if a trajectory is collision-free is also proposed in this work. This heuristics is a method of grid-based local search which presents linear computational time O(n p ), where n p is the number of verification steps. This heuristics is compared with another method for collision verification. Results are presented in this work.

Keywords

fixed-wing UAV motion planning Dijkstra algorithm digital elevation model grid-based local search 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, E.P., Beard, R.W., McLain, T.W.: Real-time dynamic trajectory smoothing for unmanned air vehicles. IEEE Transactions on Control Systems Technology 13(3), 471–477 (2005)CrossRefGoogle Scholar
  2. 2.
    Goerzen, C., Kong, Z., Mettler, B.: A Survey of Motion Planning Algorithms from the Perspective of Autonomous UAV Guidance. Journal of Intelligent and Robotic Systems, 65–100 (2010)Google Scholar
  3. 3.
    Kuwata, Y., How, J.P.: Stable trajectory design for highly constrained environments using receding horizon control. In: Proceedings of the 2004 American Control Conference, Boston, Massachusetts, pp. 902–907 (June 2004)Google Scholar
  4. 4.
    Dijkstra, E.W.: A Note on Two Problems in Connection with Graphs. Numerische Mathematik 1, 269–271 (1959)CrossRefzbMATHGoogle Scholar
  5. 5.
    Medeiros, F.L.L., Silva, J.D.S.: Grafos de Visibilidade Aplicados à Representação Computacional de Ambientes de Navegação Aérea. In: X– Simpósio de Aplicações Operacionais em Áreas de Defesa (SIGE), São José dos Campos – SP (2008)Google Scholar
  6. 6.
    Nilsson, N.J.: A Mobile Automaton: An Application of Artificial Intelligence Techniques. In: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 509–520. ACM, New York (1969)Google Scholar
  7. 7.
    Sanchez, G., Latombe, J.C.: A Single-Query Bi-Directional Probabilistic Roadmap Planner with Lazy Collision Checking. In: Jarvis, R.A., Zelinsky, A. (eds.) Published in Robotics Research: The Tenth Int. Symp. Springer Tracts in Advanced Robotics, pp. 403–417. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Felipe Leonardo Lôbo Medeiros
    • 1
  • José Demisio Simões da Silva
    • 2
  1. 1.Instituto de Estudos AvançadosSão José dos CamposBrasil
  2. 2.Instituto Nacional de Pesquisas EspaciaisSão José dos CamposBrasil

Personalised recommendations