Skip to main content

Bayesian Network Structure Inference with an Hierarchical Bayesian Model

  • Conference paper
  • 1520 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6404))

Abstract

Bayesian Networks (BNs) are applied to a wide range of applications. In the past few years great interest is dedicated to the problem of inferring the structure of BNs solely from the data. In this work we explore a probabilistic method which enables the inclusion of extra knowledge in the inference of BNs. We briefly present the theory of BNs and introduce our probabilistic model. We also present the method of Markov Chain Monte Carlo (MCMC) which is used to sample network structures and hyper-parameters of our probabilistic model. Finally we present and discuss the results focusing on aspects related with the accuracy of the reconstructed networks and how the proposed method behaves when provided with sources of knowledge of different quality.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Heckerman, D.: Learning Gaussian networks. Technical Report MSR-TR-94-10, Microsoft Research, Redmond, Washington (July 1994)

    Google Scholar 

  2. Heckerman, D.: A tutorial on learning with Bayesian networks. Technical Report MSR-TR-95-06, Microsoft Research, Redmond, Washington (1995)

    Google Scholar 

  3. Madigan, D., York, J.: Bayesian graphical models for discrete data. International Statistical Review 63, 215–232 (1995)

    Article  MATH  Google Scholar 

  4. Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109 (1970)

    Article  MATH  Google Scholar 

  5. Husmeier, D., Dybowski, R., Roberts, S.: Probabilistic Modeling in Bioinformatics and Medical Informatics. In: Advanced Information and Knowledge Processing. Springer, New York (2005)

    Google Scholar 

  6. Imoto, S., Higuchi, T., Goto, T., Tashiro, K., Kuhara, S., Miyano, S.: Combining microarrays and biological knowledge for estimating gene networksvia Bayesian networks. In: Proceedings IEEE Computer Society Bioinformatics Conference (CSB 2003), pp. 104–113 (2003)

    Google Scholar 

  7. Werhli, A.V., Husmeier, D.: Reconstructing gene regulatory networks with Bayesian networks by combiningexpression data with multiple sources of prior knowledge. Statistical Applications in Genetics and Molecular Biology, Article 15 6(1) (May 2007)

    Google Scholar 

  8. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to analyze expression data. Journal of Computational Biology 7(3/4), 601–620 (2000)

    Article  Google Scholar 

  9. Friedman, N., Koller, D.: Being Bayesian about network structure. Machine Learning 50, 95–126 (2003)

    Article  MATH  Google Scholar 

  10. Husmeier, D.: Sensitivity and specificity of inferring genetic regulatory interactionsfrom microarray experiments with dynamic Bayesian networks. Bioinformatics 19, 2271–2282 (2003)

    Article  Google Scholar 

  11. Werhli, A.V., Husmeier, D.: Gene regulatory network reconstruction by Bayesian integration of prior knowledge and/or different experimental conditions. Journal of Bioinformatics and Computational Biology 6, 543–572 (2008)

    Article  Google Scholar 

  12. Heckerman, D.: A tutorial on learning with Bayesian networks. In: Jordan, M.I. (ed.) Learning in Graphical Models. Adaptive Computation and Machine Learning, pp. 301–354. MIT Press, Cambridge (1999)

    Google Scholar 

  13. Geiger, D., Heckerman, D.: Learning Gaussian networks. In: de Mantaras, R.L., Poole, D. (eds.) Uncertainty in Artificial Intelligence, pp. 235–243. Morgan Kaufmann, San Francisco (July 1994)

    Google Scholar 

  14. Yuh, C.H., Bolouri, H., Davidson, E.H.: Genomic cis-regulatory logic: experimental and computational analysis ofa sea urchin gene. Science 279, 1896–1902 (1998)

    Article  Google Scholar 

  15. Yuh, C.H., Bolouri, H., Davidson, E.H.: Cis-regulatory logic in the endo16 gene: switching from a specificationto a differentiation mode of control. Development 128, 617–629 (2001)

    Google Scholar 

  16. Werhli, A.V., Grzegorczyk, M., Husmeier, D.: Comparative evaluation of reverse engineering gene regulatory networks withrelevance networks, graphical Gaussian models and Bayesian networks. Bioinformatics 22(20), 2523–2531 (2006)

    Article  Google Scholar 

  17. Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D., Nolan, G.P.: Causal protein-signaling networks derived from multiparameter single-celldata. Science 308(5721), 523–529 (2005)

    Article  Google Scholar 

  18. Pearl, J.: Causality: Models, Reasoning and Intelligent Systems. Cambridge University Press, London (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Werhli, A.V. (2010). Bayesian Network Structure Inference with an Hierarchical Bayesian Model. In: da Rocha Costa, A.C., Vicari, R.M., Tonidandel, F. (eds) Advances in Artificial Intelligence – SBIA 2010. SBIA 2010. Lecture Notes in Computer Science(), vol 6404. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16138-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16138-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16137-7

  • Online ISBN: 978-3-642-16138-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics