Skip to main content

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 407))

  • 1808 Accesses

Abstract

In this work, we study the problem of computing outer bounds for the region of steady states of biochemical reaction networks modelled by ordinary differential equations, with respect to parameters that are allowed to vary within a predefined region. An improved implementation of an algorithm which we presented earlier is developed in order to increase the computational efficiency. The gain in efficiency enables the analysis of medium scale biochemical network models. The applicability of the algorithm to such networks is illustrated by studying a newly developed model for a tumor necrosis factor signalling pathway. This pathway is of major importance for the inflammatory response in mammals and therefore of high biomedical interest. The proposed uncertainty analysis algorithm is applied to the model in order to understand how variations in the parameters and co-stimulation of different receptor types may affect the signalling response in this pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldridge, B.B., Burke, J.M., Lauffenburger, D.A., Sorger, P.K.: Physicochemical modelling of cell signalling pathways. Nat. Cell. Biol. 8(11), 1195–1203 (2006)

    Article  Google Scholar 

  2. Ashall, L., Horton, C.A., Nelson, D.E., Paszek, P., Harper, C.V., Sillitoe, K., Ryan, S., Spiller, D.G., Unitt, J.F., Broomhead, D.S., Kell, D.B., Rand, D.A., Se, V., White, M.R.H.: Pulsatile stimulation determines timing and specificity of NF-kappaB-dependent transcription. Science 324(5924), 242–246 (2009)

    Article  Google Scholar 

  3. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  4. Bryde, S., Grunwald, I., Hammer, A., Krippner-Heidenreich, A., Schiestel, T., Brunner, H., Tovar, G., Pfizenmaier, K., Scheurich, P.: Tumor necrosis factor (TNF)-functionalized nanostructured particles for the stimulation of membrane TNF-specific cell responses. Bioconjug. Chem. 16, 1459–1467 (2005)

    Article  Google Scholar 

  5. Bryde, S.: Characterisation of TNF receptor-2 mediated signal initiation and transduction. Ph.D. thesis, Universität Stuttgart (2004)

    Google Scholar 

  6. Del Vecchio, D., Ninfa, A.J., Sontag, E.D.: Modular cell biology: retroactivity and insulation. Molec. Syst. Biol. 4, 161 (2008)

    Google Scholar 

  7. Eissing, T., Waldherr, S., Allgöwer, F.: Modelling and analysis of cell death signalling. In: Queinnec, I., Tarbouriech, S., Garcia, G., Niculescu, S.I. (eds.) Biology and Control Theory: Current Challenges. LNCIS, vol. 357, pp. 161–180. Springer, Berlin (2007)

    Chapter  Google Scholar 

  8. Ermolaeva, M.A., Michallet, M.C., Papadopoulou, N., Utermhlen, O., Kranidioti, K., Kollias, G., Tschopp, J., Pasparakis, M.: Function of TRADD in tumor necrosis factor receptor 1 signaling and in TRIF-dependent inflammatory responses. Nat. Immunol. 9(9), 1037–1046 (2008)

    Article  Google Scholar 

  9. Faustman, D., Davis, M.: TNF receptor 2 pathway: drug target for autoimmune diseases. Nat. Rev. Drug Discov. 9(6), 482–493 (2010)

    Article  Google Scholar 

  10. Feldmann, M., Maini, R.N.: TNF defined as a therapeutic target for rheumatoid arthritis and other autoimmune diseases. Nat. Med. 9(10), 1245–1250 (2003)

    Article  Google Scholar 

  11. Festjens, N., Berghe, T.V., Cornelis, S., Vandenabeele, P.: RIP1, a kinase on the crossroads of a cell’s decision to live or die. Cell Death Differ. 14(3), 400–410 (2007)

    Article  Google Scholar 

  12. Fotin-Mleczek, M., Henkler, F., Samel, D., Reichwein, M., Hausser, A., Parmryd, I., Scheurich, P., Schmid, J.A., Wajant, H.: Apoptotic crosstalk of TNF receptors: TNF-R2-induces depletion of TRAF2 and IAP proteins and accelerates TNF-R1-dependent activation of caspase-8. J. Cell Sci. 115(Pt 13), 2757–2770 (2002)

    Google Scholar 

  13. Grell, M., Wajant, H., Zimmermann, G., Scheurich, P.: The type 1 receptor (CD120a) is the high-affinity receptor for soluble tumor necrosis factor. Proc. Natl. Acad. Sci. 95(2), 570–575 (1998)

    Article  Google Scholar 

  14. Hanahan, D., Weinberg, R.A.: The hallmarks of cancer. Cell 100(1), 57–70 (2000)

    Article  Google Scholar 

  15. Hasenauer, J., Rumschinski, P., Waldherr, S., Borchers, S., Allgöwer, F., Findeisen, R.: Guaranteed steady-state bounds for uncertain chemical processes. In: Proc. Intern. Symp. Adv. Contr. Chem. Proc. (ADCHEM), Istanbul, Turkey (2009)

    Google Scholar 

  16. Hasenauer, J., Waldherr, S., Wagner, K., Allgöwer, F.: Parameter identification, experimental design and model falsification for biological network models using semidefinite programming. IET Systems Biology 4(2), 119–130 (2010)

    Article  Google Scholar 

  17. Hoffmann, A., Levchenko, A., Scott, M.L., Baltimore, D.: The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation. Science 298(5596), 1241–1245 (2002)

    Article  Google Scholar 

  18. Kuepfer, L., Sauer, U., Parrilo, P.: Efficient classification of complete parameter regions based on semidefinite programming. BMC Bioinform. 8(1), 12 (2007)

    Article  Google Scholar 

  19. Li, X., Yang, Y., Ashwell, J.D.: TNF-RII and c-IAP1 mediate ubiquitination and degradation of TRAF2. Nature 416(6878), 345–347 (2002)

    Article  Google Scholar 

  20. Lipniacki, T., Paszek, P., Brasier, A.R., Luxon, B., Kimmel, M.: Mathematical model of NF-κB regulatory module. J. Theor. Biol. 228(2), 195–215 (2004)

    Article  MathSciNet  Google Scholar 

  21. Lipniacki, T., Puszynski, K., Paszek, P., Brasier, A.R., Kimmel, M.: Single TNFalpha trimers mediating NF-kappaB activation: Stochastic robustness of NF-kappaB signaling. BMC Bioinform. 8, 376 (2007)

    Article  Google Scholar 

  22. Micheau, O., Tschopp, J.: Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114(2), 181–190 (2003)

    Article  Google Scholar 

  23. Pobezinskaya, Y.L., Kim, Y.S., Choksi, S., Morgan, M.J., Li, T., Liu, C., Liu, Z.: The function of TRADD in signaling through tumor necrosis factor receptor 1 and TRIF-dependent Toll-like receptors. Nat. Immunol. 9(9), 1047–1054 (2008)

    Article  Google Scholar 

  24. Rae, C., Langa, S., Tucker, S.J., Macewan, D.J.: Elevated NF-κB responses and FLIP levels in leukemic but not normal lymphocytes: reduction by salicylate allows TNF-induced apoptosis. Proc. Natl. Acad. Sci. 104, 12790–12795 (2007)

    Article  Google Scholar 

  25. Schliemann, M., Eissing, T., Scheurich, P., Bullinger, E.: Mathematical modelling of TNF-α induced apoptotic and anti-apoptotic signalling pathways in mammalian cells based on dynamic and quantitative experiments. In: Proc. of the 2nd Found. Syst. Biol. Engin. (FOSBE), Stuttgart, Germany, pp. 213–218 (2007)

    Google Scholar 

  26. Stehlik, C., de Martin, R., Binder, B.R., Lipp, J.: Cytokine induced expression of porcine inhibitor of apoptosis protein (iap) family member is regulated by NF-κB. Biochem. Biophys. Res. Commun. 243(3), 827–832 (1998)

    Article  Google Scholar 

  27. Streif, S., Waldherr, S., Allgöwer, F., Findeisen, R.: Steady state sensitivity analysis of biochemical reaction networks: A brief review and new methods. In: Jayaraman, A., Hahn, J. (eds.) Systems Analysis of Biological Networks, pp. 129–148. Methods in Bioengineering. Artech House, Boston (2009)

    Google Scholar 

  28. Sturm, J.F.: Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones. Optim. Meth. Softw. 11(1), 625–653 (1999)

    Article  MathSciNet  Google Scholar 

  29. Wajant, H., Pfizenmaier, K., Scheurich, P.: Tumor necrosis factor signaling. Cell Death Differ. 10(1), 45–65 (2003)

    Article  Google Scholar 

  30. Waldherr, S., Findeisen, R., Allgöwer, F.: Global sensitivity analysis of biochemical reaction networks via semidefinite programming. In: Proc. of the 17th IFAC World Congress, Seoul, Korea, pp. 9701–9706 (2008)

    Google Scholar 

  31. Wang, C.Y., Mayo, M.W., Korneluk, R.G., Goeddel, D.V., Baldwin, A.S.: NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281(5383), 1680–1683 (1998)

    Article  Google Scholar 

  32. Wu, C.J., Conze, D.B., Li, X., Ying, S.X., Hanover, J.A., Ashwell, J.D.: TNF-alpha induced c-IAP1/TRAF2 complex translocation to a Ubc6-containing compartment and TRAF2 ubiquitination. EMBO J. 24(10), 1886–1898 (2005)

    Article  Google Scholar 

  33. Ye, H., Wu, H.: Thermodynamic characterization of the interaction between TRAF2 and tumor necrosis factor receptor peptides by isothermal titration calorimetry. Proc. Natl. Acad. Sci. 97(16), 8961–8966 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Waldherr, S., Hasenauer, J., Doszczak, M., Scheurich, P., Allgöwer, F. (2010). Global Uncertainty Analysis for a Model of TNF-Induced NF-κB Signalling. In: Lévine, J., Müllhaupt, P. (eds) Advances in the Theory of Control, Signals and Systems with Physical Modeling. Lecture Notes in Control and Information Sciences, vol 407. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16135-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16135-3_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16134-6

  • Online ISBN: 978-3-642-16135-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics