Skip to main content

Bifurcations of Dynamical Systems, Logistic and Gompertz Growth Laws in Processes of Aggregation

  • Chapter
Book cover Advances in the Theory of Control, Signals and Systems with Physical Modeling

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 407))

  • 1809 Accesses

Abstract

From the systemic point of view protein aggregation is a compensatory mechanism allowing transition of a system (protein solution) from an initially stable equilibrium, which became unstable under a stress, to another stable equilibrium, which bifurcates from the initial one because of the stress. The simplest bifurcation of this type is Logistic bifurcation with a positive small parameter.

We realize this bifurcation as a model of protein aggregation through a large-dimensional Becker-Döring system with a one-dimensional Logistic attractor (BDL) containing two equilibria. BDL depends on the magnitude δ of stress as a small parameter. Kinetics on the attractor is transformed by the observable (which is a fewnomial, i.e., a high-degree polynomial with a number of terms that is small relative to the degree) into the observed kinetics of the experiment. This model explains Gompertzian growth, unimodality of size distribution of aggregates, and relations between Rate, Plateau and time elapsed from onset to inflection moments. The explanation is based on the existence of a nonequilibrium partition function. It exists under the assumption of formation of aggregation-competent monomer as a precursor of the aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Morris, A.M., Watzky, M.A., Finke, R.G.: Protein Aggregation Kinetics, Mechanism, and Curve Fitting: A Review of the Literature. Biochimica et Biophysica Acta 1794, 375–397 (2009)

    Google Scholar 

  2. Bernacki, J.P., Murphy, R.M.: Model Discrimination and Mechanistic Interpretation of Kinetic Data in Protein Aggregation Studies. Biophysical Journal 96, 2871–2887 (2009)

    Article  Google Scholar 

  3. Frieden, C.: Protein aggregation processes: In search of the mechanism. Protein Sci. 16(11), 2334–2344 (2007)

    Article  Google Scholar 

  4. Roberts, C.J.: Non-native protein aggregation: pathways, kinetics, and shelf-life prediction. In: Murphy, R.M., Tsai, A.M. (eds.) Misbehaving Proteins: Protein Misfolding, Aggregation, and Stability. Springer, New York (2006)

    Google Scholar 

  5. Becker, R., Döring, W.: Kinetische Behandlung der Keimbildung in ubersattigten Dampfern. Ann. Phys. (Leipzig) 24, 719–752 (1935)

    MATH  Google Scholar 

  6. Wegner, A., Engel, J.: Kinetics of the cooperative association of actin to actin filaments. Biophys. Chem. 3, 215–225 (1975)

    Article  Google Scholar 

  7. Raibekas, A.A.: Estimation of protein aggregation propensity with a melting point apparatus. Analytical Biochemistry 380, 331–332 (2008)

    Article  Google Scholar 

  8. Krishnan, S., Raibekas, A.A.: Multistep Aggregation Pathway of Human Interleukin-1 Receptor Antagonist: Kinetic, Structural, and Morphological. Biophysical Journal 96, 199–208 (2009)

    Article  Google Scholar 

  9. Ball, J.M., Carr, J., Penrose, O.: The Becker-Döring Cluster Equations: Basic Properties and Asymptotic Behaviour of Solutions. Commun. Math. Phys. 104, 657–692 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  10. Penrose, O.: The Becker-Döring equations for the kinetics of phase transitions, August 22 (2001)

    Google Scholar 

  11. Niethammer, B.: A Vanishing Excess Density Limit of the Becker-D’́oring Equations, http://sfb611.iam.uni-bonn.de/uploads/159-komplett.pdf

  12. Wattis, J.A.D., Coveney, P.V.: Renormalisation-theoretic analysis of non-equilibrium phase transitions I:The Becker-D’́oring equations with power law rate coefficients, 1–18 (2001)

    Google Scholar 

  13. Arnold, V.I.: Geometrical Methods in the Theory of Ordinary Differential Equations. In: Grundlehren der mathematischen Wissenschaften, vol. 250. Springer, New York (1983)

    Google Scholar 

  14. Shoshitaishvili, A.N.: Bifurcations of topological type of a vector field near a singular point. Tr. Sem. Petrovskogo 1, 279–309 (1975); English translation in American Math. Soc. Translations 118(2) (1982)

    Google Scholar 

  15. Wattis, J.A., King, J.R.: Asymptotic solutions of Becker-Döring equations. J. Phys. A: Math. Gen. 31, 7169–7189 (1998)

    Article  MATH  Google Scholar 

  16. Bishop, M.F., Ferrone, F.A.: Kinetics of Nucleation-controlled Polymerization, A Perturbation Treatment for Use with a Secondary Pathway. Biophysical Journal 46(5), 631–644 (1984)

    Article  Google Scholar 

  17. Cooper, J.A., Loren Buhle Jr., E., Walker, S.B., Tsong, T.Y., Pollard, T.D.: Kinetic Evidence for a Monomer Activation Step in Actin Polymerization. Biochemistry 22, 2193–2202 (1983)

    Article  Google Scholar 

  18. Powers, E.T., Powers, D.L.: The Kinetics of Nucleated Polymerizations at High Concentrations: Amyloid Fibril Formation Near and Above the Supercritical Concentration. Biophysical Journal 91, 122–132 (2006)

    Article  Google Scholar 

  19. Kuret, J., Congdon, E.E., Li, G., Yin, H., Yu, X., Zhong, Q.: Evaluating Triggers and Enhancers of Tau Fibrillization. Microscopy Research and Technique 67, 141–155 (2005)

    Article  Google Scholar 

  20. Winsor, C.P.: The Gompertz Curve as a Growth Curve. Proceedings of the National Academy of Sciences 18, 1 (1932)

    Article  MATH  Google Scholar 

  21. Wang, W.: Protein aggregation and its inhibition in biopharmaceutics. International Journal of Pharmaceutics 289, 1–30 (2005)

    Article  Google Scholar 

  22. Tanford, C.: Thermodynamics of Micelle Formation: Prediction of Micelle Size and Size Distribution. Proc. Nat. Acad. Sci. USA 71(5), 1811–1815 (1974)

    Article  Google Scholar 

  23. Richards, F.J.: A flexible growth function for empirical use. J. Exp. Bot. 10, 290–300 (1959)

    Article  Google Scholar 

  24. Wegner, A., Savko, P.: Fragmentation of Actin Filaments. Biochemistry 21, 1909–1913 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shoshitaishvili, A., Raibekas, A. (2010). Bifurcations of Dynamical Systems, Logistic and Gompertz Growth Laws in Processes of Aggregation. In: Lévine, J., Müllhaupt, P. (eds) Advances in the Theory of Control, Signals and Systems with Physical Modeling. Lecture Notes in Control and Information Sciences, vol 407. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16135-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16135-3_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16134-6

  • Online ISBN: 978-3-642-16135-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics