Skip to main content

Wei-Norman Technique for Control Design of Bilinear ODE Systems with Application to Quantum Control

  • Chapter
Advances in the Theory of Control, Signals and Systems with Physical Modeling

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 407))

  • 1841 Accesses

Abstract

A two-level quantum system model describing population transfer driven by a laser field is studied. A four-dimensional real-variable differential equation model is first obtained from the complex-valued two-level model describing the wave function of the system. Due to bilinearity in the control and the states Lie-algebraic techniques can be applied for constructing the state transition matrix of the system. The Wei-Norman technique is used in the construction. The exponential representation of the transition matrix includes three base functions, two of which serves as the parameter functions, which can be chosen freely. This corresponds to considering the overall control system as an underdetermined differential system. In this framework the initial and final states can be defined corresponding to the two levels of the original system model. Then flatness-based design is applied for explicitly calculating the parameter functions, which in turn give the desired input-output pairs. This input then drives the state of the system from the given initial state to the given final state in a finite time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D’Alessandro, D., Dahleh, M.: Optimal control of two-level quantum systems. IEEE Trans. Autom. Contr. 46, 866–876 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bandrauk, A.D., Delfour, M.C., LeBris, C. (eds.): Quantum Control: Mathematical and Numerical Challenges. CRM Proc. & Lecture Notes, vol. 33. American Mathematical Society, Rhode Island (2002)

    Google Scholar 

  3. Boscain, H., Charlot, G., Gauthier, J.-P., Guérin, S., Jauslin, H.-.R.: Optimal control in laser-induced population transfer for two- and three-level quantum systems. J. Math. Phys. 43, 2107–2132 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brown, E., Rabitz, H.: Some mathematical and algorithmic challenges in the control of quantum dynamics phenomena. J. Math. Chem. 31, 17–63 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Le Bris, C.: Control theory applied to quantum chemistry: Some tracks. In: ESAIM: Proceedings of Contrôle des Systèmes Gouvernés par des Équations aux Dérivées Partielles, vol. 8, pp. 77–94 (2000)

    Google Scholar 

  6. LĂ©vine, J.: On necessary and sufficient conditions for differential flatness (December 2006), http://arxiv.org/abs/math.OC/0605405

  7. Fliess, M.: Generalized controller canonical forms for linear and nonlinear dynamics. IEEE Trans. Autom. Contr. 35, 994–1001 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fliess, M., Lévine, J., Martin, P., Rouchon, P.: On differentially flat nonlinear systems. In: Fliess, M. (ed.) Proc. IFAC Symp. Nonlinear Control Systems Design, Bordeaux, France, pp. 408–412 (1992)

    Google Scholar 

  9. Fliess, M., Lévine, J., Martin, P., Rouchon, P.: Flatness and defect of non-linear systems: Introductory theory and applications. Int. J. Contr. 61, 1327–1361 (1995)

    Article  MATH  Google Scholar 

  10. Fuchs, G.D., Dobrovitski, V.V., Toyli, D.M., Heremans, F.J., Awschalom, D.D.: Gigahertz Dynamics of a Strongly Driven Single Quantum Spin. Science 326, 1520–1522 (2009)

    Article  Google Scholar 

  11. Graichen, K., Zeitz, M.: Feedforward control design for finite-time transition problems of nonlinear systems with input and output constraints. IEEE Trans. Autom. Contr. 53, 1273–1278 (2008)

    Article  MathSciNet  Google Scholar 

  12. Grivopoulos, S., Bamieh, B.: Optimal population transfers in a quantum system for large transfer time. IEEE Trans. Autom. Contr. 53, 980–992 (2008)

    Article  MathSciNet  Google Scholar 

  13. Nihtilä, M., Tervo, J., Kokkonen, P.: Control of Burgers’ system via parametrization. In: Allgöwer, F. (ed.) Preprints of 6th IFAC Symp. Nonlinear Control Systems, NOLCOS 2004, Stuttgart, Germany, vol. I, pp. 423–428 (2004)

    Google Scholar 

  14. Nihtilä, M., Tervo, J., Kokkonen, P.: Pseudo-differential operators in parametrization of boundary-value control systems. In: CD-ROM Proceedings of the 43rd IEEE Conf. Decision and Control, CDC 2004 (IEEE Catalog number 04CH37601C, ISBN 0-7803-8683-3), Paradise Islands, The Bahamas, pp. 1958–1963 (2004)

    Google Scholar 

  15. Press, D., Ladd, T.D., Zhang, B., Yamamoto, Y.: Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008)

    Article  Google Scholar 

  16. Pople, J.A.: Nobel lecture: Quantum chemical models. Rev. Mod. Phys. 71, 1267–1274 (1999)

    Article  Google Scholar 

  17. Rabitz, H., de Vivie-Riedle, R., Motzkus, M., Kompa, K.: Whither the future of controlling quantum phenomena? Science 288, 824–828 (2000)

    Article  Google Scholar 

  18. Shapiro, M., Brumer, P.: Principles of Quantum Control of Molecular Processes. John Wiley & Sons Inc., Hoboken (2003)

    Google Scholar 

  19. Wang, X., Schirmer, S.: Analysis of Lyapunov control for Hamiltonian quantum systems. In: Sixth EUROMECH (European Mechanics Society) Nonlinear Dynamics Conference, ENOC 2008, St. Petersburg, Russia (2008)

    Google Scholar 

  20. Schirmer, S.: Implementation of quantum gates via optimal control. J. Mod. Optics (2009), DOI: 10.1080/09500340802344933

    Google Scholar 

  21. Pereira da Silva, P.S., Rouchon, P.: Flatness-based control of a single qubit gate. IEEE Trans. Autom. Contr. 53, 775–779 (2008)

    Article  MathSciNet  Google Scholar 

  22. Vedral, V., Plenio, M.B.: Basics of quantum computation. Progress in Quantum Electronics 20, 1–39 (1998)

    Article  Google Scholar 

  23. Wei, J., Norman, E.: On global representation of the solutions of linear differential equations as product of exponentials. In: Proc. AMS, vol. 15, pp. 327–334 (1964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nihtilä, M. (2010). Wei-Norman Technique for Control Design of Bilinear ODE Systems with Application to Quantum Control. In: Lévine, J., Müllhaupt, P. (eds) Advances in the Theory of Control, Signals and Systems with Physical Modeling. Lecture Notes in Control and Information Sciences, vol 407. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16135-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16135-3_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16134-6

  • Online ISBN: 978-3-642-16135-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics