Skip to main content

Nonholonomic Mechanics, Dissipation and Quantization

  • Chapter

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 407))

Abstract

In this review paper we consider some of the basics of nonholonomic systems, considering in particular how it is possible do derive nonholonomic equations of motion as a limit of a Lagrangian system subject to dissipation. This in then extended to show how dissipation may be induced from a Hamiltonian field with a view to quantization of the system.

Support from NSF grants DMS-0604307 and DMS-0907949 is gratefully acknowledged.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Dynamical Systems III. Encyclopedia of Math., vol. 3. Springer, Heidelberg (1988)

    Google Scholar 

  2. Bloch, A.M.: Nonholonomic Mechanics and Control. Interdisciplinary Applied Mathematics. Springer, Heidelberg (2003)

    Book  MATH  Google Scholar 

  3. Bloch, A.M., Fernandez, O., Mestdag, T.: Hamiltonization of Nonholonomic Systems and the Inverse Problem of the Calculus of Variations. Reports on Mathematical Physics 63, 225–249 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bloch, A.M., Rojo, A.: Quantization of a nonholonomic system. Phys. Rev. Letters 101, 030404 (2008)

    Article  MathSciNet  Google Scholar 

  5. Bloch, A.M., Krishnaprasad, P.S., Marsden, J.E., Murray, R.: Nonholonomic mechanical systems with symmetry. Arch. Rat. Mech. An. 136, 21–99 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bloch, A.M., Krishnaprasad, P.S., Marsden, J.E., Ratiu, T.S.: The Euler–Poincaré equations and double bracket dissipation. Comm. Math. Phys. 175, 1–42 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bloch, A.M., Hagerty, P., Weinstein, M.: Radiation induced instability. SIAM J. Applied Math. 64, 484–524 (2004)

    Article  MathSciNet  Google Scholar 

  8. Bloch, A.M., Marsden, J.E., Zenkov, D.E.: Quasivelocities and symmetries in nonholonomic systems. Dynamical Systems 24, 187–222 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bullo, F., Lewis, A.D.: Geometric control of mechanical systems. Texts in Applied Mathematics, vol. 49. Springer, New York (2005) (Modeling, analysis, and design for simple mechanical control systems)

    MATH  Google Scholar 

  10. Carathéodory, C.: Der Schlitten. Z. Angew. Math. und Mech. 13, 71–76 (1933)

    Article  Google Scholar 

  11. Cendra, H., Marsden, J.E., Ratiu, T.S.: Geometric mechanics, Lagrangian reduction and nonholonomic systems. In: Enquist, B., Schmid, W. (eds.) Mathematics Unlimited-2001 and Beyond, pp. 221–273. Springer, Heidelberg (2001)

    Google Scholar 

  12. Fufaev, N.A.: On the possibility of realizing a nonholonomic constraint by means of viscous friction forces. Prikl. Math. Mech 28, 513–515 (1964)

    MathSciNet  Google Scholar 

  13. Karapetyan, A.V.: On realizing nonholonomic constraints by viscous friction forces and Celtic stones stability. Prikl. Matem. Mekhan. USSR 45, 30–36 (1983)

    Google Scholar 

  14. Kozlov, V.V.: Realization of nonintegrable constraints in classical mechanics. Sov. Phys. Dokl. 28, 735–737 (1983)

    MATH  Google Scholar 

  15. Kozlov, V.V.: The problem of realizing constraints in dynamics. J. Appl. Math. Mech. 56(4), 594–600 (1992)

    Article  MathSciNet  Google Scholar 

  16. Lamb, H.: On the peculiarity of wave-system due to the free vibrations of a nucleus in an extended medium. Proc. London Math, Society 32, 208–211 (1900)

    Article  Google Scholar 

  17. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. Texts in Applied Mathematics, vol. 17. Springer, Heidelberg (1999), First Edition (1994), Second Edition (1999)

    MATH  Google Scholar 

  18. Neimark, J.I., Fufaev, N.A.: Dynamics of Nonholonomic Systems. Translations of Mathematical Monographs, vol. 33. AMS, Providence (1972)

    MATH  Google Scholar 

  19. Osborne, J.M., Zenkov, D.V.: Steering the Chaplygin sleigh by a moving mass. In: Proc. IEEE CDC, vol. 44, pp. 1114–1118 (2005)

    Google Scholar 

  20. Zenkov, D.V., Bloch, A.M.: Invariant measures of nonholonomic flows with internal degrees of freedom. Nonlinearity 16, 1793–1807 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bloch, A.M. (2010). Nonholonomic Mechanics, Dissipation and Quantization. In: Lévine, J., Müllhaupt, P. (eds) Advances in the Theory of Control, Signals and Systems with Physical Modeling. Lecture Notes in Control and Information Sciences, vol 407. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16135-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16135-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16134-6

  • Online ISBN: 978-3-642-16135-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics