Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 827))

  • 3517 Accesses

Abstract

Classical physics—the contrary to quantum—means all those fundamental dynamical phenomena and their theories which became known until the end of the nineteenth century, from our studying the macroscopic world. Galileo’s, Newton’s, and Maxwell’s consecutive achievements, built one on top of the other, obtained their most compact formulation in terms of the classical canonical dynamics. At the same time, the conjecture of the atomic structure of the microworld was also conceived. By extending the classical dynamics to atomic degrees of freedom, certain microscopic phenomena also appearing at the macroscopic level could be explained correctly. This yielded indirect, yet sufficient, proof of the atomic structure. But other phenomena of the microworld (e.g., the spectral lines of atoms) resisted the natural extension of the classical theory to the microscopic degrees of freedom

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Preskill, J.: Quantum computation and information, (Caltech 1998). http://theory.caltech.edu/people/preskill/ph229/

  3. Bouwmeester, D., Ekert, A., Zeilinger, A. (eds): The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation. Springer, Berlin (2000)

    MATH  Google Scholar 

  4. Landau, L.D., Lifshitz, E.M.: Course of Theoretical Physics: Mechanics. Pergamon, Oxford (1960)

    Google Scholar 

  5. Gutzwiller, M.C.: Chaos in Classical and Quantum Mechanics. Springer, Berlin (1991)

    Google Scholar 

  6. von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955)

    MATH  Google Scholar 

  7. Peres, A.: Quantum Theory: Concepts and Methods. Kluwer, Dordrecht (1993)

    MATH  Google Scholar 

  8. Kraus, K.: States, Effects, and Operations: Fundamental Notions of Quantum Theory. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  9. Busch, P., Lahti, P.J., Mittelstadt, P.: The Quantum Theory of Measurement. Springer, Berlin (1991)

    Google Scholar 

  10. Joos, E., Zeh, H.D., Kiefer, C., Giulini, D., Kupsch, K., Stamatescu, I.O.: Decoherence and the Appearance of a Classical World in Quantum Theory, 2nd edn. Springer, Berlin (2003)

    Google Scholar 

  11. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Rev. Mod. Phys. 74, 145 (2002)

    Google Scholar 

  12. Ekert, A., Hayden, P., Inamori, H.: Basic Concepts in Quantum Computation, (Les Houches lectures 2000); Los Alamos e-print arXiv: quant-ph/0011013

    Google Scholar 

  13. Aharonov, Y., Albert, D.Z., Vaidman, L.: Phys. Rev. Lett. 60,1351 (2008)

    Article  ADS  Google Scholar 

  14. Diósi, L.: Weak measurements in quantum mechanics. In: Françoise, J.P., Naber, G.L., Tso, S.T. (eds) Encyclopedia of Mathematical Physics, vol. 4, pp. 276–282. Elsevier, Oxford (2006)

    Chapter  Google Scholar 

  15. Werner, R.F.: Phys. Rev. A 40, 4277 (1989)

    Article  ADS  Google Scholar 

  16. Wootters, W.K., Zurek, W.K.: Nature 299, 802 (1982)

    Article  ADS  Google Scholar 

  17. Ivanovic, I.D.: Phys. Lett. A 123, 257 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  18. Wiesner, S.: SIGACT News 15, 77 (1983)

    Article  Google Scholar 

  19. Bennett, C.H.: Phys. Rev. Lett. 68, 3121 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing, In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, IEEE Press, New York (1984)

    Google Scholar 

  21. Braunstein, S.L., Mann, A., Revzen, M.: Phys. Rev. Lett. 68, 3259 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Einstein, A., Podolsky, B., Rosen, N.: Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  23. Stinespring, W.F.: Proc. Am. Math. Soc. 6, 211 (1955)

    MathSciNet  MATH  Google Scholar 

  24. Peres, A.: Phys. Rev. Lett. 77, 1413 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Horodecki, M., Horodecki, P., Horodecki, R.: Phys. Lett. A 223, 1 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Bell, J.S.: Physics 1, 195 (1964)

    Google Scholar 

  27. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Phys. Rev. Lett. 23, 880 (1969)

    Article  ADS  Google Scholar 

  28. Popescu, S.: Phys. Rev. Lett. 74, 2619 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Bennett, C.H., Wiesner, S.J.: Phys. Rev. Lett. 69, 2881 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Phys. Rev. Lett. 70, 1895 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Lindblad, G.: Commun. Math. Phys. 48, 199 (1976)

    Article  MathSciNet  Google Scholar 

  32. Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: J. Math. Phys. 17, 821 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  33. Shannon, C.E.: Bell Syst. Tech. J. 27, 379–623 (1948)

    MathSciNet  MATH  Google Scholar 

  34. Schumacher, B.: Phys. Rev. A 51, 2738 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  35. Holevo, A.S.: Problems Inf. Transm. 5, 247 (1979)

    Google Scholar 

  36. Feynman, R.P.: Int. J. Theor. Phys. 21, 467 (1982)

    Article  MathSciNet  Google Scholar 

  37. Deutsch, D.: Proc. R. Soc. Lond. A 400, 97 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Deutsch, D., Jozsa, R.: Proc. R. Soc. Lond. A 439, 533 (1992)

    MathSciNet  ADS  Google Scholar 

  39. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual STOC, Association for Computer Machinery, New York (1996)

    Google Scholar 

  40. Shor, P.W.: Algorithms for quantum computation: discrete logarithm and factoring. In: 35th Annual Symposium on Foundations of Computer Science. IEEE Press, Los Alamitos (1994)

    Google Scholar 

  41. Shor, P.W.: Phys. Rev. A 52, 2493 (1995)

    Article  ADS  Google Scholar 

  42. Tucci, R.R.: QC Paulinesia. http://www.ar-tiste.com/PaulinesiaVer1.pdf (2004)

  43. Scarani, V., Ziman, M., Štelmanovič, P., Gisin, N., Bužek, V.: Phys. Rev. Lett. 88, 097905 (2002)

    Article  ADS  Google Scholar 

  44. Linden, N., Popescu, S., Skrzypczyk, P.: How small can thermal machines be? Towards the smallest possible refrigerator, arXiv:0908.2076v1 (quant-ph) (2009)

    Google Scholar 

  45. Alicki, R.: J. Phys. 12, 103 (1979)

    ADS  Google Scholar 

  46. Spohn, H., Lebowitz, J.L.: Adv. Chem. Phys. 38, 109 (1979)

    Article  Google Scholar 

  47. Geva, E., Kosloff, R.: J. Chem. Phys. 96, 3054 (1992)

    Article  ADS  Google Scholar 

  48. Landauer, R.: IBM J. Res. Dev. 5, 183 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  49. Diósi, L., Feldmann, T., Kosloff, R.: Int. J. Quant. Inf. 4, 99 (2006)

    Article  MATH  Google Scholar 

  50. Csiszár, I., Hiai, F., Petz, D.: J. Math. Phys. 48, 092102 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  51. Jaeger, G.: Quantum Information: An Overview. Springer, Berlin Heidelberg New York (2007)

    MATH  Google Scholar 

  52. Bruss, D., Leuchs G.: (editors): Lectures on Quantum Information. Wiley-VCH, Weinheim (2007)

    Google Scholar 

  53. Stolze, J., Suter, D.: Quantum Computing: A Short Course from Theory to Experiment. Wiley-VHC, Weinheim (2008)

    MATH  Google Scholar 

  54. Barnett. SM.: Quantum Information. Oxford University Press, Oxford (2009)

    Google Scholar 

  55. Bennett, C., DiVincenzo, D.P., Wootters, W.K.: Quantum Information Theory. Springer, Berlin Heidelberg New York (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lajos Diósi .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Diósi, L. (2011). Introduction. In: A Short Course in Quantum Information Theory. Lecture Notes in Physics, vol 827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16117-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16117-9_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16116-2

  • Online ISBN: 978-3-642-16117-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics