Skip to main content

Visualizing Dissimilarity Data Using Generative Topographic Mapping

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6359))

Abstract

The generative topographic mapping (GTM) models data by a mixture of Gaussians induced by a low-dimensional lattice of latent points in low dimensional space. Using back-projection, topographic mapping and visualization can be achieved. The original GTM has been proposed for vectorial data only and, thus, cannot directly be used to visualize data given by pairwise dissimilarities only. In this contribution, we consider an extension of GTM to dissimilarity data. The method can be seen as a direct pendant to GTM if the dissimilarity matrix can be embedded in Euclidean space while constituting a model in pseudo-Euclidean space, otherwise. We compare this visualization method to recent alternative visualization tools.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bishop, C.M., Svensen, M., Williams, C.K.I.: GTM: the generative topographic mapping. Neural Computation 10(1), 215–234 (1998)

    Article  MATH  Google Scholar 

  2. Boulet, R., Jouve, B., Rossi, F., Villa, N.: Batch kernel SOM and related Laplacian methods for social network analysis. Neurocomputing 71(7-9), 1257–1273 (2008)

    Article  Google Scholar 

  3. Chen, Y., Garcia, E.K., Gupta, M.R., Rahimi, A., Cazzani, L.: Similarity-based classification: concepts and algorithms. JMLR 10, 747–776 (2009)

    MathSciNet  MATH  Google Scholar 

  4. Cottrell, M., Hammer, B., Hasenfuss, A., Villmann, T.: Batch and median neural gas. Neural Networks 19, 762–771 (2006)

    Article  MATH  Google Scholar 

  5. Graepel, T., Obermayer, K.: A stochastic self-organizing map for proximity data. Neural Computation 11, 139–155 (1999)

    Article  Google Scholar 

  6. Hammer, B., Hasenfuss, A.: Topographic mapping of large dissimilarity data sets. Neural Computation (to appear)

    Google Scholar 

  7. Hammer, B., Micheli, A., Sperduti, A., Strickert, M.: Recursive self-organizing network models. Neural Networks 17(8-9), 1061–1086 (2004)

    Article  MATH  Google Scholar 

  8. Haasdonk, B., Bahlmann, C.: Learning with distance substitution kernels. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 220–227. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Hathaway, R.J., Bezdek, J.C.: Nerf c-means: Non-Euclidean relational fuzzy clustering. Pattern Recognition 27(3), 429–437 (1994)

    Article  Google Scholar 

  10. Keim, D.A., Schneidewind, J.: Scalable Visual Data Exploration of Large Data Sets via MultiResolution. Journ. of Universal Comp. Sci. 11(11), 1766–1779 (2005)

    Google Scholar 

  11. Kohonen, T.: Self-Organizing Maps. Springer, Heidelberg (1995)

    Book  MATH  Google Scholar 

  12. Lee, J., Verleysen, M.: Nonlinear dimensionality reduction. Springer, Heidelberg (2007)

    Book  MATH  Google Scholar 

  13. van der Maaten, L.J.P., Postma, E.O., van den Herik, H.J.: Dimensionality Reduction: A Comparative Review. Tilburg Univ. Tech. Rep., TiCC-TR 2009-005 (2009)

    Google Scholar 

  14. van der Maaten, L.J.P., Hinton, G.E.: Visualizing High-Dimensional Data Using t-SNE. Journal of Machine Learning Research 9, 2579–2605 (2008)

    MATH  Google Scholar 

  15. Pekalska, E., Duin, R.P.W.: The Dissimilarity Representation for Pattern Recognition, Foundations and Applications. World Scientific, Singapore (2005)

    Book  MATH  Google Scholar 

  16. Seo, S., Obermayer, K.: Self-organizing maps and clustering methods for matrix data. Neural Networks 17, 1211–1230 (2004)

    Article  MATH  Google Scholar 

  17. Venna, J., Kaski, S.: Local multidimensional scaling. Neural Networks 19(6-7), 889–899 (2006)

    Article  MATH  Google Scholar 

  18. Yin, H.: On the equivalence between kernel self-organising maps and self-organising mixture density network. Neural Networks 19(6), 780–784 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gisbrecht, A., Mokbel, B., Hasenfuss, A., Hammer, B. (2010). Visualizing Dissimilarity Data Using Generative Topographic Mapping. In: Dillmann, R., Beyerer, J., Hanebeck, U.D., Schultz, T. (eds) KI 2010: Advances in Artificial Intelligence. KI 2010. Lecture Notes in Computer Science(), vol 6359. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16111-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16111-7_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16110-0

  • Online ISBN: 978-3-642-16111-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics