Skip to main content

A Computational Model of Human Movement Coordination

  • Conference paper
KI 2010: Advances in Artificial Intelligence (KI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6359))

Included in the following conference series:

Abstract

Due to the numerous degrees of freedom in the human motor system, there exists an infinite number of possible movements for any given task. Unfortunately, it is currently unknown how the human central nervous system (CNS) chooses one movement out of the plethora of possible movements to solve the task at hand. The purpose of this study is the construction of a computational model of human movement coordination to unravel the principles the CNS might use to select one movement from plethora of possible movements in a given situation. Thereby, different optimization criteria were examined. The comparison of predicted and measured movement patterns exhibited that a minimum jerk strategy on joint level yielded the closest fit to the human data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernstein, N.: The coordination and regulation of movement. Pergamon Press, Oxford (1967)

    Google Scholar 

  2. Morasso, P.: Spatial control of arm movements. Experimental Brain Research 42, 223–227 (1981)

    Article  Google Scholar 

  3. Flash, T., Hogan, N.: The coordination of arm movements: an experimentally confirmed mathematical model. Journal of Neuroscience 5, 1688–1703 (1985)

    Google Scholar 

  4. Harris, C.: On the optimal control of behaviour: A stochastic perspective. Journal of Neuroscience Methods 83, 73–88 (1998)

    Article  Google Scholar 

  5. Diedrichsen, J., Shadmehr, R., Ivry, R.B.: Optimal feedback control and beyond. Trends in Cognitive Science 14(1), 31–39 (2010)

    Article  Google Scholar 

  6. Todorov, E.: Optimality principles in sensorimotor control. Nature Neuroscience 9, 907–915 (2004)

    Article  Google Scholar 

  7. Hermens, F., Gielen, S.: Posture-based or trajectory based movement planning: A comparison of direct and indirect pointing movements. Experimental Brain Research 159, 340–348 (2004)

    Article  Google Scholar 

  8. Biess, A., Liebermann, D., Flash, T.: A computational model for redundant human three-dimensional pointing movements: Integration of independent spatial and temporal motor plans simplifies movement dynamics. Journal of Neuroscience 27, 13045–13064 (2007)

    Article  Google Scholar 

  9. Gielen, S.: Review of models for the generation of multijoint movements in 3D. In: Sternad, D. (ed.) Progress in Motor Control: A Multidisciplinary Perspective, Adv. in Exp. Med. and Bio., vol. 629, pp. 523–552. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Nakano, E., Imamizu, H., Osu, R., Uno, Y., Gomi, H., Yoshioka, T., Kawato, M.: Quantitative examinations of internal representations for arm trajectory planning: Minimum commanded torque change model. Journal of Neurophysiology 81, 2140–2155 (1999)

    Google Scholar 

  11. Uno, Y., Kawato, M., Suzuki, R.: Formation and control of optimal trajectory in human multijoint arm movement. Biological Cybernetics 61, 89–101 (1989)

    Article  Google Scholar 

  12. Simonidis, C.: Methoden zur Analyse und Synthese menschlicher Bewegungen unter Anwendung von Mehrkörpersystemen und Optimierungsverfahren (Analysis and synthesis of human movements by multibody systems and optimization methods) (phD–thesis). Karlsruhe Institute of Technology (2010), http://digbib.ubka.uni-karlsruhe.de/volltexte/1000017136

  13. Wu, G., et al.: ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion - part II: Shoulder, elbow, wrist and hand. Journal of Biomechanics 38, 981–992 (2005)

    Article  Google Scholar 

  14. De Leva, P.: Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. Journal of Biomechanics 29, 1223–1230 (1996)

    Article  Google Scholar 

  15. Lu, T., O’Connor, J.: Bone position estimation from skin marker co-ordinates using global optimization with joint constraints. Journal of Biomechanics 32(2), 129–134 (1999)

    Article  Google Scholar 

  16. Cappozzo, A., Croce, U., Leardini, A., Chiari, L.: Human movement analysis using stereophotogrammetry. Part 1: Theoretical background. Gait and Posture 21, 186–196 (2005)

    Google Scholar 

  17. von Stryk, O.: Optimal control of multibody systems in minimal coordinates. ZAMM-Zeitschrift für Angewandte Mathematik und Mechanik 78, 1117–1121 (1998)

    Article  MATH  Google Scholar 

  18. Stein, T., Simonidis, C., Seemann, W., Schwameder, H.: Kinematic analysis of human goal-directed movements. International Journal of Computer Science in Sport (in revision)

    Google Scholar 

  19. Schöllhorn, W.: Systemdynamische Betrachtung komplexer Bewegungsmuster im Lernprozess (System dynamic observations of complex movement patterns during the learning process). Peter Lang (1998)

    Google Scholar 

  20. Bortz, J.: Statistik für Sozialwissenschaftler. Statistics for Social Scientists. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  21. Faisal, A.A., Selen, L.P.J., Wolpert, D.M.: Noise in the nervous system. Nature Reviews Neuroscience 9, 292–303 (2008)

    Article  Google Scholar 

  22. Feldman, A.G.: The nature of voluntary control of motor actions. In: Latash, M.L., Lestienne, F. (eds.) Motor Control and Learning, pp. 3–8. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  23. Harris, C.M., Wolpert, D.M.: Signal-dependent noise determines motor planning. Nature 394, 780–784 (1998)

    Article  Google Scholar 

  24. Fitts, P.M.: The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology 47, 381–391 (1954)

    Article  Google Scholar 

  25. Sainburg, R.L., Poizner, H., Ghez, C.: Loss of proprioception produces deficits in interjoint coordination. Journal of Neurophysiology 70, 2136–2147 (1993)

    Google Scholar 

  26. Admiraal, M.A., Kusters, M., Gielen, S.: Modeling kinematics and dynamics of human arm movements. Motor Control 8, 312–338 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stein, T., Simonidis, C., Seemann, W., Schwameder, H. (2010). A Computational Model of Human Movement Coordination. In: Dillmann, R., Beyerer, J., Hanebeck, U.D., Schultz, T. (eds) KI 2010: Advances in Artificial Intelligence. KI 2010. Lecture Notes in Computer Science(), vol 6359. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16111-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16111-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16110-0

  • Online ISBN: 978-3-642-16111-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics