Advertisement

PageRank Optimization in Polynomial Time by Stochastic Shortest Path Reformulation

  • Balázs Csanád Csáji
  • Raphaël M. Jungers
  • Vincent D. Blondel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6331)

Abstract

The importance of a node in a directed graph can be measured by its PageRank. The PageRank of a node is used in a number of application contexts – including ranking websites – and can be interpreted as the average portion of time spent at the node by an infinite random walk. We consider the problem of maximizing the PageRank of a node by selecting some of the edges from a set of edges that are under our control. By applying results from Markov decision theory, we show that an optimal solution to this problem can be found in polynomial time. It also indicates that the provided reformulation is well-suited for reinforcement learning algorithms. Finally, we show that, under the slight modification for which we are given mutually exclusive pairs of edges, the problem of PageRank optimization becomes NP-hard.

Keywords

PageRank graphs complexity Markov decision processes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avrachenkov, K., Litvak, N.: The effect of new links on Google PageRank. Stochastic Models 22, 319–331 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Berkhin, P.: A survey on PageRank computing. Internet Math. pp. 73–120 (2005)Google Scholar
  3. 3.
    Bertsekas, D.P., Tsitsiklis, J.N.: Neuro-Dynamic Programming. Athena Scientific, Belmont (1996)zbMATHGoogle Scholar
  4. 4.
    Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. In: Proc. of the 7th Intern. Conf. on World Wide Web, pp. 107–117 (1998)Google Scholar
  5. 5.
    De Kerchove, C., Ninove, L., Van Dooren, P.: Maximizing PageRank via outlinks. Linear Algebra and its Applications 429, 1254–1276 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Feinberg, E.A., Shwartz, A. (eds.): Handbook of Markov Decision Processes: Methods and Applications. Kluwer Academic Publishers, Dordrecht (2002)zbMATHGoogle Scholar
  7. 7.
    Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1990)Google Scholar
  8. 8.
    Gonzaga, C.C.: An Algorithm for Solving Linear Programming Problems in O(n 3 L) operations. In: Progress in Mathematical Programming: Interior-Point and Related Methods, pp. 1–28. Springer, Heidelberg (1988)Google Scholar
  9. 9.
    Ishii, H., Tempo, R.: Computing the PageRank variation for fragile web data. SICE J. of Control, Measurement, and System Integration 2(1), 1–9 (2009)Google Scholar
  10. 10.
    Langville, A.N., Meyer, C.D.: Google’s PageRank and Beyond: The Science of Search Engine Rankings. Princeton University Press, Princeton (2006)zbMATHGoogle Scholar
  11. 11.
    Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. American Mathematical Society, Providence (2009)zbMATHGoogle Scholar
  12. 12.
    Littman, M.L., Dean, T.L., Kaelbling, L.P.: On the complexity of solving Markov decision problems. In: Proc. of the Eleventh International Conference on Uncertainty in Artificial Intelligence, pp. 394–402 (1995)Google Scholar
  13. 13.
    Lovász, L.: Random walks on graphs: A survey. In: Combinatorics: Paul Erdős is Eighty, vol. 2, pp. 348–353. Bolyai Society Mathematical Studies, Budapest (1996)Google Scholar
  14. 14.
    Papadimitriou, C.H., Tsitsiklis, J.N.: The complexity of Markov decision processes. Mathematics of Operations Research 12(3), 441–450 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Sutton, R.S., Barto, A.G.: Reinforcement learning. MIT Press, Cambridge (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Balázs Csanád Csáji
    • 1
    • 2
  • Raphaël M. Jungers
    • 3
    • 4
  • Vincent D. Blondel
    • 4
  1. 1.Department of Electrical and Electronic Engineering, School of EngineeringThe University of MelbourneAustralia
  2. 2.Computer and Automation Research InstituteHungarian Academy of Sciences 
  3. 3.Lab. for Information and Decision SystemsMassachusetts Institute of Technology 
  4. 4.Department of Mathematical EngineeringUniversité catholique de LouvainBelgium

Personalised recommendations