Advertisement

Lipid Bilayer-Membrane Protein Coupling

  • Mohammad AshrafuzzamanEmail author
  • Jack Tuszynski
Chapter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

Lipid organization in membranes forms liquid crystalline structures.

Keywords

Lipid Bilayer Bilayer Thickness Lipid Charge Liquid Crystalline Structure Screen Coulomb Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aguilella, V. M. and Bezrukov, S. M.: Alamethicin channel conductance modified by lipid charge. Eur. Biophys. J. 30, 233–241 (2001).Google Scholar
  2. 2.
    Allen, T. W., Andersen, O.S. and Roux, B.: Energetics of ion conduction through the gramicidin channel. Proc. Natl. Acad. Sci. 101, 117–122 (2004).Google Scholar
  3. 3.
    Andersen, O.S., D. B. Sawyer and Koeppe, R.E. II. In: Biomembrane structure and Function, K. R. K. Easwaran and B. Gaber (eds.) p227. Schenectady, New York: Adenine (1992).Google Scholar
  4. 4.
    Andersen, O.S.: Ion movement through Gramicidin A Channels - Studies on the Diffusion-controlled Association Step. Biophys. J. 41, 147–165 (1983).Google Scholar
  5. 5.
    Andersen, O.S., Nielsen, C., Maer, A. M., Lundbæk, J. A., Goulian, M. and Koeppe, R.E. II: Gramicidin channels: molecular force transducers in lipid bilayers. Biol. Skr. Dan. Vid. Selsk. 49, 75–82 (1998).Google Scholar
  6. 6.
    Andersen, O.S. and Koeppe, R.E. II: Bilayer thickness and membrane protein function: an energetic perspective. Annu. Rev. Biophys. Biomol. Struct. 36, 107–130 (2007).Google Scholar
  7. 7.
    Andersen, O.S., Koeppe, R.E. II and Roux, B.: Gramicidin Channels. IEEE Trans. Nanobiosci. 4, 10–20 (2005).Google Scholar
  8. 8.
    Arseniev, A. S., Barsukov, I. L., Bystrov, V.F. and Ovchinnikov, Yu. A.: Biol. Membr. 3, 437 (1986).Google Scholar
  9. 9.
    Ashrafuzzaman, M. and Beck, H.: In Vortex dynamics in two-dimensional Josephson junction arrays, University of Neuchatel, ch 5 p 85, (2004) http://doc.rero.ch/record/2894ln=fr
  10. 10.
    Ashrafuzzaman, M. and Andersen, O.S.: Lipid bilayer elasticity and intrinsic curvature as regulators of channel function: a single molecule study. Biophys. J. 421A (2007).Google Scholar
  11. 11.
    Ashrafuzzaman, M., McElhaney, R. N. and Andersen, O.S.: One antimicrobial peptide (gramicidin S) can affect the function of another (gramicidin A or alamethicin) via effects on the phospholipid bilayer. Biophys. J. 94 6–7, (2008).Google Scholar
  12. 12.
    Ashrafuzzaman, M., Andersen, O.S. and McElhaney, R. N.: The antimicrobial peptide gramicidin S permeabilizes phospholipid bilayer membranes without forming discrete ion channels. Biochim. Biophys. Acta 1778, 2814–2822 (2008).Google Scholar
  13. 13.
    Ashrafuzzaman, Md., Lampson. M.A., Greathouse, D.V., Koeppe II, R.E., Andersen, O.S.: Manipulating lipid bilayer material properties by biologically active amphipathic molecules. J. Phys.: Condens. Mat. 18, S1235–1255 (2006).Google Scholar
  14. 14.
    Ashrafuzzaman, Md., Duszyk, M. and Tuszynski, J. A.: Chemotherapy drugs Thiocolchicoside and Taxol Permeabilize Lipid Bilayer Membranes by Forming Ion Pores. J. of Physics: Conf. Series 329, 012029, 1–16 (2011).Google Scholar
  15. 15.
    Ashrafuzzaman, Md., Tseng, C.-Y., Duszyk, M. and Tuszynski, J. A.: Chemotherapy drugs form ion pores in membranes due to physical interactions with lipids. submitted (2011).Google Scholar
  16. 16.
    Benz, R., Fröhlich, O., Läuger, P., and Montal, M.: Electrical capacity of black lipid films and of lipid bilayers made from monolayers. Biochim. Biophys. Acta 394, 323–334, (1975).Google Scholar
  17. 17.
    Berneche, S. and Roux, B.: Molecular Dynamics of the KcsA \(K^+\) Channel in a Bilayer Membrane. Biophys. J. 78, 2900–2917 (2000).Google Scholar
  18. 18.
    Bezrukov, S.M., Rand, R.P., Vodyanoy, I. and Parsegian, V. A.: Lipid packing stress and polypeptide aggregation : alamethicin channel probed by proton titration of lipidcharge. Faraday Discuss. 111, 173–183 (1998).Google Scholar
  19. 19.
    Boheim, G.: Statistical analysis of alamethicin channels in black lipid membranes. J. Mem. Biol. 19, 277–303 (1974).Google Scholar
  20. 20.
    Brown, M.F.: Modulation of rhodopsin function by properties of the membrane bilayer. Chem. Phys. Lipids 73, 159–180 (1994).Google Scholar
  21. 21.
    Dan, N. and Safran, S.A.: Effect of Lipid Characteristics on the structure of Trans-membrane proteins. Biophys. J. 75, 1410–1414 (1998).Google Scholar
  22. 22.
    Daune, M.: Molecular Biophysics: structures in Motion, Oxford University Press, Oxford (1999).Google Scholar
  23. 23.
    de Meyer, F. and Smit, B. Comment on “cluster formation of trans-membrane proteins due to hydrophobic mismatching”. Phys. Rev. Lett. 102, 219801 (2009).Google Scholar
  24. 24.
    Duan, Y., Wu, C., Chowdhury, S., Lee, M.C., Xiong, G., Zhang, W., Yang, R., Cieplak, P., Luo, R., Lee, T.: A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comput. Chem. 24, 1999–2012 (2003).Google Scholar
  25. 25.
    Durkin, J. T., Koeppe, R.E. II and Andersen, O.S.: Energetics of gramicidin hybrid channel formation as a test for structural equivalence *1: Side-chain substitutions in the native sequence. J. Mol. Biol. 211, 221–234 (1990).Google Scholar
  26. 26.
    Durkin, J. T., Providence, L. L., Koeppe, R.E. II and Andersen, O.S.: Energetics of heterodimer formation among gramicidin Analogues with an \(NH_2\)-terminal addition or deletion consequences of missing a residue at the join in the channel. J. Mol. Biol. 231, 1102–1121 (1993).Google Scholar
  27. 27.
    Evans, E. A. and Hochmuth, R.M.: Curr. Top. Membr. Transp. 10, 1 (1978).Google Scholar
  28. 28.
    Evans, E., Rawicz, W. and Hofmann, A.F.: In Bile Acids in Gastroenterology Basic and Clinical Advances, edited by A.F. Hofmann, G. Paumgartner and A. Stiehl (Dordrecht: Kluwer-Academic), p 59 (1995).Google Scholar
  29. 29.
    Finkelstein, A.: Water and nonelectrolyte permeability of lipid bilayer membranes. J. Gen. Physiol. 68, 127–135 (1976).Google Scholar
  30. 30.
    Goulian, M., Mesquita, O.N., Fygenson, D.K., Nielsen, C., and Andersen., O.S.: Gramicidin channel kinetics under tension. Biophys. J. 74, 328–337 (1998).Google Scholar
  31. 31.
    Greathouse, D. V., Koeppe, R.E. II, Providence, L. L., Shobana, S. and Andersen, O.S.: Design and characterization of gramicidin channels. Meth. Enzymol. 294, 525–550 (1999).Google Scholar
  32. 32.
    Grønbech-Jensen, N., Mashl, R. J., Bruinsma, R. F., and Gelbart, W. M.: Counterion-induced attraction between rigid polyelectrolytes. Phys. Rev. Lett. 78, 2477–2480 (1997).Google Scholar
  33. 33.
    Gruner, S. M.: In Biologically Inspired Physics, edited by L. Peliti (New York: Plenum), p 127 (1991).Google Scholar
  34. 34.
    Gruner, S. M.: Intrinsic curvature hypothesis for biomembrane lipid composition: a role for nonbilayer lipids. Proc. Natl. Acad. Sci. 82, 3665–69 (1985).Google Scholar
  35. 35.
    Harper, P.E., Mannock, D.A., Lewis, R.N.A.H., McElhaney, R.N. and Gruner, S.M.: X-Ray diffraction structures of some phosphatidylethanolamine lamellar and inverted hexagonal phases. Biophys. J. 81, 2693–2706 (2001).Google Scholar
  36. 36.
    He, K., Ludtke, S. J., Huang, H. W. and Worcester, D. L.: Antimicrobial peptide pores in membranes detected by neutron in-plane scattering. Biochemistry 34, 15614–15618 (1995).Google Scholar
  37. 37.
    Helfrich, W.: Elastic properties of lipidbilayers: theory and possible experiments. Z. Naturforsch. 28C, 693–703 (1973).Google Scholar
  38. 38.
    Helfrich, P. and Jakobsson, E.: Calculation of deformation energies and conformations in lipidmembranes containing gramicidin channels. Biophys. J. 57, 1075–1084 (1990).Google Scholar
  39. 39.
    Heyer, R. J., Muller, R. U. and Finkelstein, A.: Inactivation of monazomycin-induced voltage-dependent conductance in thin lipidmembranes. I. Inactivation produced by long chain quaternary ammonium ions. J. Gen. Physiol. 67, 703–729 (1976).Google Scholar
  40. 40.
    Huang, H. W.: Deformation free energy of bilayer membrane and its effect on gramicidin channel lifetime. Biophys. J. 50, 1061–1071 (1986).Google Scholar
  41. 41.
    Hwang, T. C., Koeppe, R.E. II and Andersen, O.S.: Genistein can modulate channel function by a phosphorylation-independent mechanism: importance of hydrophobic mismatch and bilayer mechanics. Biochemistry 42, 13646–58 (2003).Google Scholar
  42. 42.
    Israelachvili, J.N.: Refinement of the fluid-mosaicmodel of membrane structure. Biochim. Biophys. Acta 469, 221–225 (1977).Google Scholar
  43. 43.
    Jakalian, A., Bush, B.L., Jack, D.B., Bayly, C.I.: Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method. J. Comput. Chem. 21, 132–146 (2000).Google Scholar
  44. 44.
    Jakalian, A., Jack, D.B., Bayly, C.I.: Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and Validation. J. Comput. Chem. 23, 1623–1641 (2002).Google Scholar
  45. 45.
    Katsaras, J., Prosser, R. S., Stinson, R. H. and Davis, J. H.: Constant helical pitch of the gramicidin channel in phospholipid bilayers. Biophys. J. 61, 827–830 (1992).Google Scholar
  46. 46.
    Keller, S. L., Bezrukov, S. M., Gruner, S. M., Tate, M. W., Vodyanoy, I. and Parsegian, V. A.: Probability of alamethicin conductance states varies with nonlamellar tendency of bilayer phospholipids. Biophys. J. 65, 23–27 (1993).Google Scholar
  47. 47.
    Ketchem, R. R., Roux, B. and Cross, T. A.: High-resolution polypeptide structure in a lamellar phase lipid environment from solid state NMR derived orientational constraints. Structure 5, 1655–1669 (1997).Google Scholar
  48. 48.
    Killian, J. A. and Nyholm, T. K.: Peptides in lipidbilayers: the power of simple models. Curr. Opin. Struct. Biol. 16, 473–479 (2006).Google Scholar
  49. 49.
    Killian, J. A., Salemink, I., de Planque, M. R., Lindblom, G., Koeppe, R.E. II, Greathouse, D. V.: Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by trans-membrane alpha-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans. Biochemistry 35, 1037–1045 (1996).Google Scholar
  50. 50.
    Kirk, G. L. and Gruner, S. M.: Lyotropic effects of alkanes and headgroup composition on the \(l_{\alpha }\) -\(H_{II}\) lipid liquid crystal phase transition : hydrocarbon packing versus intrinsic curvature. J. Phys. 46, 761–769 (1985).Google Scholar
  51. 51.
    Koeppe, R.E. II, Providence, L. L., Greathouse, D. V., Heitz, F., Trudelle, Y., Purdie, N. and Andersen, O.S.: On the helix sense of gramicidin A single channel. Proteins Struct., Funct., Genet. 12, 49–62 (1992).Google Scholar
  52. 52.
    Latorre, M. and Alvarez, O.: Voltage-dependent channels in planar lipidbilayer membranes. Physiol. Rev. 61, 77–150 (1981).Google Scholar
  53. 53.
    Lee, M. T., Hung, W. C., Chen, F. Y. and Huang, H. W.: Many-Body Effect of Antimicrobial Peptides: On the Correlation Between Lipid’s Spontaneous Curvature and Pore Formation. Biophys. J. 89, 4006–4016 (2005).Google Scholar
  54. 54.
    Lee, M.C., Duan, Y.: Distinguish protein decoys by using a scoring function based on a new Amber force field, short molecular dynamics simulations, and the generalized Born solvent model. Proteins 55, 620–634 (2004).Google Scholar
  55. 55.
    Lewis, B.A. and Engelman, D.M.: Lipidbilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles. J. Mol. Biol. 166, 211–217 (1983).Google Scholar
  56. 56.
    Lundbæk, J. A., Birn, P. H. A. J., Søgaard, R., Nielsen, C., Girshman, J., Bruno, M. J., Tape, S. E., Egebjerg, J., Greathouse, D. V., Mattice, G. L., Koeppe, R.E. II and Andersen, O.S.: Regulation of sodium channel function by bilayer elasticity. The importance of hydrophobic coupling. Effects of micelle-forming amphiphiles and cholesterol. J. Gen. Physiol. 123, 599–621 (2004).Google Scholar
  57. 57.
    Lundbæk, J. A.: Lipid Bilayer - mediated Regulation of Ion Channel Function by Amphiphilic drugs. J. of Gen. Physiol. 131, 421–429 (2008).Google Scholar
  58. 58.
    Lundbæk, J.A. and Andersen, O.S.: Spring constants for channel-induced lipidbilayer deformations. Estimates using gramicidin channels. Biophys. J. 76, 889–895 (1999).Google Scholar
  59. 59.
    Ly, H. V. and Longo, M. L.: The Influence of Short-Chain Alcohols on Interfacial Tension, Mechanical Properties, Area/Molecule, and Permeability of fluid Lipid Bilayers. Biophys. J. 87, 1013–1033 (2004).Google Scholar
  60. 60.
    McLaughlin, S.: Electrostatic Potentials at Membrane-Solution Interfaces. Curr. Top. Membr. Transp. 9, 71–98 (1977).Google Scholar
  61. 61.
    Mengistu, D. H. and May, S.: Debye-Hückel theory of mixed charged-zwitterionic lipid layers. Eur. Phys. J. E 26, 251–260 (2008).Google Scholar
  62. 62.
    Miloshevsky, G. V. and Jordan, P. C.: Gating gramicidin channels in lipidbilayers: reaction coordinates and the mechanism of dissociation. Biophys. J. 86, 92–104 (2004).Google Scholar
  63. 63.
    Mobashery, N., Nielsen, C. and Andersen, O.S.: The conformational preference of gramicidin channels is a function of lipidbilayer thickness. FEBS Lett. 412, 15–20 (1997).CrossRefGoogle Scholar
  64. 64.
    Mtheitsen, O. G. and Bloom, M.: Mattress model of lipid-protein interactions in membranes. Biophys. J. 46, 141–153 (1984).Google Scholar
  65. 65.
    Mtheitsen, O. G. and Andersen, O.S.: In Biol. Skr. Dan. Vid. (Selsk Munksgaard, Copenhagen: B) (1998).Google Scholar
  66. 66.
    Muller, R. U. and Finkelstein, A.: The Effect of Surface Charge on the Voltage-Dependent Conductance Induced in Thin Lipid Membranes by Monazomycin. J. Gen. Physiol. 60, 285–306 (1972).Google Scholar
  67. 67.
    Nielsen, C., Goulian, M. and Andersen, O.S.: Biophys, Energetics of inclusion-induced bilayer deformations, Biophys. J. 74, 1966–1983 (1998).Google Scholar
  68. 68.
    Nielsen, C. and Andersen, O.S.: Inclusion-induced bilayer deformations: effects of monolayer equilibrium curvature. Biophys. J. 79, 2583–2604 (2000).Google Scholar
  69. 69.
    O’Connell, A. M., Koeppe, R.E. II and Andersen, O.S.: Kinetics of gramicidin channel formation in lipidbilayers: trans-membrane monomer association. Science 250, 1256–1259 (1990).Google Scholar
  70. 70.
    Odijk, T.: Polyelectrolytes near the rod limit. J. Plym. Sci., Polym. Phys. Ed. 15, 477–483 (1977).Google Scholar
  71. 71.
    Orbach, E. and Finkelstein, A.: The nonelectrolyte permeability of planar lipidbilayer membranes. J. Gen. Physiol. 75, 427–436 (1980).Google Scholar
  72. 72.
    Parsegian, A.: Energy of an Ion crossing a low dielectric membrane: solutions to fthe relevant electrostatic problems. Nature 221, 844–846 (1969).Google Scholar
  73. 73.
    Perozo, E., Cortes, D.M. and Cuello, L.G.: Structural Rearrangements Underlying \(K^+\)- Channel Activation Gating. Science 285, 73–78 (1999).Google Scholar
  74. 74.
    Perozo, E., Cortes, D. M., Sompornpisut, P., Kloda, A. and Martinac, B.: Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418, 942–948 (2002).Google Scholar
  75. 75.
    Ring, A.: Gramicidin channel-induced lipidmembrane deformation energy: influence of chain length and boundary conditions. Biochim. Biophys. Acta 1278, 147–159 (1996).Google Scholar
  76. 76.
    Rostovtseva, T. K., Aguilella, V. M., Vodayanoy, I., Bezrukov, S. M. and Parsegian, A.: Membrane surface-charge titration probed by gramicidin A channel conductance. Biophys. J. 75, 1783–1792 (1998).Google Scholar
  77. 77.
    Sackmann, E.: In Biological Membranes. Chapman, D. (ed.) (London: Academic), p 105 (1984).Google Scholar
  78. 78.
    Santore, M. M., Discher, D. E., Won, Y-Y., Bates, F. S. and Hammer, D. A.: Effect of Surfactant on Unilamellar Polymeric Vesicles: Altered Membrane Properties and Stability in the Limit of Weak Surfactant Partitioning. Langmuir 18, 7299–7308 (2002).Google Scholar
  79. 79.
    Sawyer, D. B., Koeppe, R.E. II and Andersen, O.S.: Induction of conductance heterogeneity in gramicidin channels. Biochemistry 28, 6571–6583 (1989).Google Scholar
  80. 80.
    Schatzberg, P. J.: Polymer Sci. Part C 10, 87–92 (1965).Google Scholar
  81. 81.
    Seddon, J. M.: Structure of the inverted hexagonal (\(H_{II}\)) phase, and non-lamellar phase transitions of lipids. Biochim. Biophys. Acta 1031, 1–69 (1990).Google Scholar
  82. 82.
    Simon, S.A., McIntosh, T.J. and Latorre, R.: Influence of cholesterol on water permeation into bilayers. Science 216, 65–67 (1982).Google Scholar
  83. 83.
    Singer, S.J. and Nicolson, G.L.: The fluid mosaic model of the structure of cell membranes. Science 175, 720–731 (1972).Google Scholar
  84. 84.
    Szabo, G., Eisenman, G. and Ciani, S.: The effects of the macrotetralide actin antibiotics on the electrical properties of phospholipid bilayer membranes. J. Membr. Biol. 1, 346 (1969).Google Scholar
  85. 85.
    Tate, M. W., Eikenberry, E. F., Turner, D. C., Shyamsunder, E. and Gruner, S. M.: Non bilayer phases of membrane lipids. Chem. Phys. Lipids 57, 147–164 (1991).Google Scholar
  86. 86.
    Teh, C.K., Tuszynski, J. and Weisman, F.L.: The decay of carbon luminescence in liquid-encapsulated czochralski-grown semi-insulating GaAs. J. Mater. Res. 5, 365–371 (1990).Google Scholar
  87. 87.
    Townsley, L. E., Tucker, W. A., Sham, S. and Hinton, J. F.: Structures of gramicidins A, B, and C incorporated into sodium dodecyl sulfate micelles. Biochemistry 40, 11676–11686 (2001).Google Scholar
  88. 88.
    Toyoshima, C. and Mizutani, T.: Crystal structure of the calcium pump with a bound ATP analogue. Nature 430, 529–535 (2004).Google Scholar
  89. 89.
    Unwin, P.N.T. and Ennis, P. D.: Two configurations of a channel-forming membrane protein. Nature 307, 609–613 (1984).Google Scholar
  90. 90.
    Wallace, B. A., Veatch, W. R. and Blout, E. R.: Conformation of gramicidin A in phospholipid vesicles: circular dichroism studies of effects of ion binding, chemical modification, and lipid structure. Biochemistry 20, 5754–5760 (1981).Google Scholar
  91. 91.
    Walter, A. and Gutknecht, J.: Monocarboxylic acid permeation through lipidbilayer membranes. J. Membrane Biol. 77, 255–264 (1984).Google Scholar
  92. 92.
    Woolf, T.B. and Roux, B.: Molecular dynamics simulation of the gramicidin channel in a phospholipid bilayer. Proc. Natl. Acad. Sci. USA 91, 11631–11635 (1994).Google Scholar
  93. 93.
    Wu, Y., He, K., Ludtke, S. J. and Huang, H. W.: X-ray diffraction study of lipidbilayer membranes interacting with amphiphilic helical peptides: diphytanoyl phosphatidylcholine with alamethicin at low concentrations. Biophys. J. 68, 2361–2369 (1995).Google Scholar
  94. 94.
    Zhou, Y. and Raphael, R. M.: Effect of Salicylate on the Elasticity, Bending Stiffness, and Strength of SOPC Membranes. Biophys. J. 89, 1789–1801 (2005).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.College of Science, Department of BiochemistryKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Cross Cancer Institute, Department of PhysicsUniversity of AlbertaEdmontonCanada

Personalised recommendations