Advertisement

The Membrane as a Transporter, Ion Channels and Membrane Pumps

  • Mohammad AshrafuzzamanEmail author
  • Jack Tuszynski
Chapter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

A cell membrane’s primary role is to create a barrier against materials transferring between cellular exterior and interior regions. However, the presence of certain natural or artificial agents (especially during treatment) such as membrane proteins (MPs), antimicrobial peptides (AMPs), etc., occasionally induces transient or stable transport events into cell membranes. These properties are often found to be highly dynamic, time dependent, and specific to the agents inducing them. The events also fall into different classes due to the diversity of their structures and mechanisms. In this chapter, we discuss in detail a few classes of such events with a special focus on their membrane effects.

Keywords

Current Trace Cylindrical Channel Membrane Association Lipid Monolayer Bilayer Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Andersen, O.S., Sawyer, D.B., and Koeppe II, R.E.: Bio membrane structure and Function. edited by K. R. K. Easwaran and B. Gaber (Schenectady, New York: Adenine), 227–244 (1992)Google Scholar
  2. 2.
    Andreu, D., Rivas, L.: Animal antibacterial peptides: an overview. Biopolymers 47, 415–433 (1999)Google Scholar
  3. 3.
    Anishkin, A., Sukharev, S., Colombini, M.: Searching for the molecular arrangement of trans-membrane ceramide channels. Biophys. J. 90, 2414–2426 (2006)Google Scholar
  4. 4.
    Apell, H.J.& Karlish, S.J.: Functional properties of Na, K-ATPase, and their structural implications, as detected with biophysical techniques. J. Membr. Biol. 180, 1–9 (2001)Google Scholar
  5. 5.
    Arseniev, A.S., Barsukov, I.L., Bystrov, V.F., and Ovchinnikov, Y.A.: Biol. Membr. 3, 437–62 (1986)Google Scholar
  6. 6.
    Ashrafuzzaman, Md. and Tuszynski, J.A.: Ion pore formation in membranes due to complex interactions between lipids and antimicrobial peptides or biomolecules. Handbook on Nanoscience, Engineering and nanotechnology. Edited by Goddard, Brenner, Lyshevki and Iafrate; Taylor& Francis Group (CRC press) (2011)Google Scholar
  7. 7.
    Ashrafuzzaman, Md., Tseng, C.-Y., Tuszynski, J.A. Chemotherapy drugs form ion pores in membranes due to physical interactions with lipids. (submitted) (2011)Google Scholar
  8. 8.
    Ashrafuzzaman, Md., Duszyk, M. and Tuszynski, J. A.: Chemotherapy drugs Thiocolchicoside and Taxol Permeabilize Lipid Bilayer Membranes by Forming Ion Pores. J. of Physics: Conf. Series 329, 012029.1–16 (2011)Google Scholar
  9. 9.
    Ashrafuzzaman, Md., Andersen, O.S., and McElhaney, R.N. The antimicrobial peptide gramicidin S permeabilizes phospholipid bilayer membranes without forming discrete ion channels. Biochim. Biophys. Acta 1778, 2814–2822 (2008)Google Scholar
  10. 10.
    Ashrafuzzaman, Md., Lampson, M.A., Greathouse, D.V., Koeppe II, R.E., Andersen, O.S.: Manipulating lipid bilayer material properties by biologically active amphipathic molecules. J. Phys.: Condens. Mat. 18, S1235–1255 (2006)Google Scholar
  11. 11.
    Ashrafuzzaman, M. and Tuszynski, J. Regulation of channel functions due to coupling with a lipid bilayer. Biophys. J. 98, 51a (2010) and J. Comp. Nanosci. 9, 564–570 (2012) Google Scholar
  12. 12.
    Bechinger, B. structure and functions of channel-forming peptides: Magainins, Secropins, Melittin and Alamethicin. J. Membr. Bio. 156: 197–211, (1997)Google Scholar
  13. 13.
    Bechinger, B. (1999) The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy, Biochim. Biophys. Acta 1462, 157–183.Google Scholar
  14. 14.
    S.E. Blondelle, R.A. Houghten, Biochemistry 31 (1992) 12688–12694.Google Scholar
  15. 15.
    Boheim, G. (1974) Statistical analysis of alamethicin channels in black lipid membranes. J. Mem. Biol. 19:277–303.Google Scholar
  16. 16.
    Brown, M.F.: Modulation of rhodopsin function by properties of the membrane bilayer. Chem. Phys. Lipids 73: 159–180 (1994)Google Scholar
  17. 17.
    Castano, S., Desbat, B., Laguerre, M., Dufourq, J.: Structure, orientation and affinity for interfaces and lipids of ideally amphipathic lytic \(L_iK_j\)(i=2j) peptides. Biochim. Biophys. Acta 1416, 176–194 (1999)Google Scholar
  18. 18.
    Cruciani, R.A., Barker, J.L., Durell, S.R., Raghunathan, G., Guy, H.R., Zasloff, M., Stanley, E.F.: Magainin 2, a natural antibiotic from frog skin, forms ion channels in lipid bilayer membranes. Eur J Pharmacol.226(4), 287–296 (1992)Google Scholar
  19. 19.
    Gadsby, D.C., Rakowski, R.F.& De Weer, P.: Extracellular access to the Na, K Pump: Pathway similar to ion channel. Science 260, 100–103 (1993)Google Scholar
  20. 20.
    Garty, H., Karlish, S.J.: Role of FXYD proteins in ion transport. Annu. Rev. Physiol. 68, 431–459 (2006)Google Scholar
  21. 21.
    Gazit, E., Lee, W.J., Brey, P.T., Shai, Y.: Biochemistry 33, 10681–10692 (1994)Google Scholar
  22. 22.
    Geering, K.: The functional role of \(\beta \) subunits in oligomeric P-type ATPases. J. Bioenerg. Biomembr. 33, 425–438 (2001)Google Scholar
  23. 23.
    Glynn, I. M.: Annual review prize lecture. ‘All hands to the sodium pump’. J. Physiol. (Lond.) 462, 1–30 (1993)Google Scholar
  24. 24.
    Grant, E., Beeler, T.J., Taylor, K.M.P., Gable, K., Roseman, M.A.: Biochemistry 31, 9912–9918, (1992)Google Scholar
  25. 25.
    Gruner, S.M.: Lipid membrane curvature elasticity and protein function in Biologically Inspired Physics, edited by L. Peliti (New York: Plenum): 127–135 (1991)Google Scholar
  26. 26.
    He, K., Ludtke, S.J., Huang, H.W., and Worcester, D.L.: Antimicrobial peptide pores in membranes detected by neutron in-plane scattering. Biochemistry 34, 15614–15618 (1995)Google Scholar
  27. 27.
    Helfrich, W.: Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. 28C, 693–703 (1973)Google Scholar
  28. 28.
    Israelachvili, J.N.: Refinement of the fluid-mosaic model of membrane structure. Biochim. Biophys. Acta 469, 221–225 (1977)Google Scholar
  29. 29.
    Ketchem, R.R., Roux, B., and Cross, T.A. 1997. High-resolution polypeptide structure in a lamellar phase lipid environment from solid state NMR derived orientational constraints. structure 5: 1655–69.Google Scholar
  30. 30.
    S. Lambotte, P. Jasperse, B. Bechinger, Biochemistry 37 (1998) 16–22.Google Scholar
  31. 31.
    Ludtke, S.J., He, K., Heller, W.T., Harroun, T.A., Yang, L., and Huang, H.W. 1996. Membrane pores induced by magainin. Biochemistry 35:13723–13728.Google Scholar
  32. 32.
    Lutsenko, S.& Kaplan, J. H. An essential role for the extracellular domain of the Na, K-ATPase \(\beta \)-subunit in cation occlusion. Biochemistry 32, 6737–6743 (1993).Google Scholar
  33. 3.
    K. Matsuzaki, Biochim. Biophys. Acta 1376 (1998) 391–400.Google Scholar
  34. 34.
    Matsuzaki, K., Murase, O., Tokuda, H., Fujii, N., and Miyajima, K. 1996. An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry 35: 11361–11368.Google Scholar
  35. 35.
    K. Matsuzaki, K. Sugishita, N. Fujii, K. Miyajima, Biochemistry 34 (1995) 3423–3429.Google Scholar
  36. 36.
    J. P. Morth, B. P. Pedersen, M. S. Toustrup-Jensen, T. L.-M. Sørensen, J. Petersen, J. P. Andersen, B. Vilsen, P. Nissen. Crystal structure of the sodium-potassium pump. NATURE 450: 1043–50 (2007)Google Scholar
  37. 37.
    O’Connell, A.M., Koeppe II, R.E., and Andersen, O.S. 1990. Kinetics of gramicidin channel formation in lipidbilayers: trans-membrane monomer association. Science 250: 1256–1259.Google Scholar
  38. 38.
    Perozo, E., Cortes, D.M., and Cuello, L.G. 1999. Structural Rearrangements Underlying \(K^+\)- Channel Activation Gating. Science 285: 73–78.Google Scholar
  39. 39.
    Perozo, E., Cortes, D.M., Sompornpisut, P., Kloda, A., and Martinac, B. 2002. Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418: 942–948.Google Scholar
  40. 40.
    Post, R. L., Hegyvary, C.& Kume, S. Activation by adenosine triphosphate in the phosphorylation kinetics of sodium and potassium ion transport adenosine triphosphatase. J. Biol. Chem. 247, 6530–6540 (1972).Google Scholar
  41. 41.
    Y. Pouny, D. Rapaport, A. Mor, P. Nicolas, Y. Shai, Biochemistry 31 (1992) 12416–12423.Google Scholar
  42. 42.
    Sackmann, E. 1984. In Biological Membranes, edited by D. Chapman (London: Academic): 105.Google Scholar
  43. 43.
    S. Samanta, J. Stiban, T.K. Maugel, M. Colombini. Visualization of ceramide channels by transmission electron microscopy. Biochim. Biophys. Acta 1808: 1196–201 (2011)Google Scholar
  44. 44.
    M.S.P. Sansom: Curr. Opin. Colloid Interface Sci. 3 518–524 (1998)Google Scholar
  45. 45.
    P. Schlieper, E. De Robertis: Arch. Biochem. Biophys. 184 204–208 (1977)Google Scholar
  46. 46.
    J. Seelig, P. M. Macdonald and P. G. Scherer. phospholipid head groups as sensors of electric charge in membranes. Biochemistry 26; 7535–7541 (1987)Google Scholar
  47. 47.
    Shepherd, J. C. W.,& Buldt, G.: Biochim. Biophys. Acta 514, 83–94 (1978)Google Scholar
  48. 48.
    L. J. Siskind, A. Davoody, N. Lewin, S. Marshall, and M. Colombini.: Enlargement and Contracture of C2-Ceramide Channels. Biophysical Journal 85: 1560–1575 (2003)Google Scholar
  49. 49.
    Skou, J. C.: The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim. Biophys. Acta 1000, 439–446 (1957)Google Scholar
  50. 50.
    Sobko, A.A., Kotova, E.A., Antonenko, Y.N., Zakharov, S.D., and Cramer, W.A.: Lipid dependence of the channel properties of a colicin E1-lipidtoroidal pore. The J. of Biol. Chem. 281: 14408–16 (2006)Google Scholar
  51. 51.
    Therien, A. G.& Blostein, R.: Mechanisms of sodium pump regulation. Am. J. Physiol. Cell Physiol. 279, C541–C566 (2000)Google Scholar
  52. 52.
    Townsley, L.E., Tucker, W.A., Sham, S., and Hinton, J.F.: structures of gramicidins A, B, and C incorporated into sodium dodecyl sulfate micelles. Biochemistry 40: 11676–11686 (2001)Google Scholar
  53. 53.
    Toyoshima, C., and Mizutani, T.: Crystal structure of the calcium pump with a bound ATP analogue. Nature 430: 529–535 (2004)Google Scholar
  54. 54.
    E.M. Tytler, J.P. Segrest, R.M. Epand, S.Q. Nie, R.F. Epand, V.K. Mishna, Y.V. Venkatachalapathi, G.M. Anantharamaiah, J. Biol. Chem. 268 22121 (1993)Google Scholar
  55. 55.
    Unwin, P.N.T., and Ennis, P.D.: Two configurations of a channel-forming membrane protein. Nature 307: 609–613 (1984)Google Scholar
  56. 56.
    Wieprecht, T., Dathe, M., Krause, E., Beyermann, M., Maloy, W.L., MacDonald, D.L., Bienert, M. FEBS Lett. 417: 135–140, (1997)Google Scholar
  57. 57.
    Yang, L., Harroun, T., Weiss, T.M., Ding, L., and Huang, H.W. Barrel-stave model or toroidal model? A case study on melittin pores. Biophys. J. 81: 1475–1485, (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.College of Science, Department of BiochemistryKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Cross Cancer Institute, Department of PhysicsUniversity of AlbertaEdmontonCanada

Personalised recommendations