Advertisement

Structure of Membranes

  • Mohammad AshrafuzzamanEmail author
  • Jack Tuszynski
Chapter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

Amphipathic molecules adsorb themselves onto air–water or oil–water interfaces, such that their head groups are facing the water environment. They aggregate to form either spherical micelles or liquid crystalline structures. In general, amphipathic molecules can be anionic, cationic, non-ionic, or zwitterionic. The relative concentrations of these surfactants in an aqueous solution will affect the solution’s physical and chemical properties. At a specific value, called the critical micelle concentration, micelles containing 20–100 molecules are formed spontaneously in the solution, with the hydrophilic head groups exposed and the hydrophobic tails hidden inside the micelle. The principal driving force for micelle formation is entropic, due to a negative free energy change accompanying the liberation of water molecules from clathrates. When phospholipids are mixed in water, they form double-layered structures, since their hydrophilic ends are in contact with water while the hydrophobic ends face inwards touching each other.

Keywords

Membrane Potential Excitable Cell Capacitive Current Membrane Constituent Squid Giant Axon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ashrafuzzaman, Md., Lampson, M.A., Greathouse, D.V., Koeppe II, R.E., Andersen, O.S.: Manipulating lipid bilayer material properties by biologically active amphipathic molecules. J. Phys.: Condens. Mat. 18, S1235–S1255 (2006)Google Scholar
  2. 2.
    Ashrafuzzaman, Md., Tuszynski, J.A.: Ion pore formation in lipid bilayers and related energetic considerations. Curr. Med. Chem. 19: 1619–1634 (2012)Google Scholar
  3. 3.
    Berridge, M.J.: Elementary and global aspects of calcium signalling. J. Physiol. 499, 290–306 (1997)Google Scholar
  4. 4.
    Mannella, C.A., Bonner, W.D., Jr.: Bio chemical characteristics of the outer membranes of plant mitochondria. Biochim. Biophys. Acta 413, 213–225 (1975)Google Scholar
  5. 5.
    Clapham, D.E.: Calcium signaling. Cell 80, 259–268 (1995)Google Scholar
  6. 6.
    Demaurex, N., Schlegel, W., Varnai, P., Mayr, G., Lew, D.P., Krause, K.H.: Regulation of \(\text{Ca}^{2+}\) influx in myeloid cells. Role of plasma membrane potential, inositol phosphates, cytosolic free [\({\text{Ca}}^{2+}\)], and filling state of intracellular \(\text{Ca}^{2+}\) stores. J. Clin. Invest. 90, 830–839 (1992)Google Scholar
  7. 7.
    Fewtrell, C.: \(\text{Ca}^{2+}\) oscillations in non-excitable cells. Annu. Rev. Physiol. 55, 427–454 (1993)Google Scholar
  8. 8.
    Hodgkin, A.L., Huxley, A.F., Katz, B.: Measurements of current-voltage relations in the membrane of the giant axon of Loligo. J. Physiol. 116 (4), 424–448 (1952). PMID: 14946713Google Scholar
  9. 9.
    Hodgkin, A.L., Huxley, A.F.: Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. 116 (4), 449–472 (1952). PMID: 14946713Google Scholar
  10. 10.
    Hodgkin, A.L., Huxley, A.F.: The components of membrane conductance in the giant axon of Loligo. J. Physiol. 116 (4), 473–496 (1952). PMID: 14946714Google Scholar
  11. 11.
    Hodgkin, A.L., Huxley, A.F.: The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol. 116 (4), 497–506 (1952). PMID: 14946715Google Scholar
  12. 12.
    Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117 (4), 500–544 (1952). PMID: 12991237Google Scholar
  13. 13.
    Keener, J., Sneyd, J.: Mathematical Physiology, p. 133. Springer, Berlin (1998)Google Scholar
  14. 14.
    Lewis, R.S., Cahalan, M.D.: Mitogen-induced oscillations of cytosolic \(\text{Ca}^{2+}\) and transmembrane \(\text{Ca}^{2+}\) current in human leukemic T cells. Cell Regul. 1, 99–112 (1989)Google Scholar
  15. 15.
    Luzzatti, V., Husson, F.: The structure of the liquid-crystalline phases of lipid-water systems. J. Cell Biol. 12, 207–219 (1962)Google Scholar
  16. 16.
    Mahaut-Smith, M.P., Hussain, J.F., Mason, M.J.: De-polarization-evoked \(\text{Ca}^{2+}\) release in a non-excitable cell, the rat megakaryocyte. J. Physiol. 515, 385–390 (1999)Google Scholar
  17. 17.
    Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35, 193–213 (1981). doi: 10.1016/S0006-3495(81)84782-0 Google Scholar
  18. 18.
    Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50, 20612070 (1964)Google Scholar
  19. 19.
    Nelson, M.E., Rinzel, J.: The Hodgkin–Huxley Model. In: Bower, J., Beeman, D. (eds.) The Book of GENESIS: Exploring Realistic Neural Models with the GEneral NEural simulation System, pp. 29–49. Springer, New York (1994)Google Scholar
  20. 20.
    Parsegian, A.: Energy of an Ion crossing a Low dielectric Membrane: solutions to four relevant electrostatic problems. Nature 221, 844–846 (1969)Google Scholar
  21. 21.
    Penner, R., Matthews, G., Neher, E.: Regulation of calcium influx by second messengers in rat mast cells. Nature 334, 499–504 (1988)Google Scholar
  22. 22.
    Rink, T.J., Jacob, R.: Calcium oscillations in non-excitable cells. Trends Neurosci. 12, 43–46 (1989). PMID: 2469208, doi: 10.1016/0166-2236(89)90133-1 Google Scholar
  23. 23.
    Singer, S.J., Nicolson, G.L.: The fluid mosaic model of the structure of cell membranes. Science 175, 720 (1972)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Biochemistry, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Department of Physics, Cross Cancer InstituteUniversity of AlbertaEdmontonCanada

Personalised recommendations