Advertisement

Cytokeratin-Positive Cells (CK+) as Potential Dendritic Cells

Chapter
Part of the Advances in Anatomy, Embryology and Cell Biology book series (ADVSANAT, volume 209)

Abstract

The skin and the mucosa represent anatomical barriers against invaders from the atmosphere or from the fluid-rich environment as the first line of defence (Turvey and Broide 2010). The barriers deliver mechanical and chemical protection by cell–cell coherence, and by secretion of unspecific anti-pathogenic agents.

Keywords

Granulosa Cell Cumulus Cell Antral Follicle Primordial Follicle Luteal Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Antczak M, van Blerkom J (2000) The vascular character of ovarian follicular granulosa cells: phenotypic and functional evidence for an endothelial-like cell population. Hum Reprod 15:2306–2318CrossRefPubMedGoogle Scholar
  2. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252CrossRefPubMedGoogle Scholar
  3. Ben-Ze'ev A, Amsterdam A (1989) Regulation of cytoskeletal protein organization and expression in human granulosa. Endocrinology 124:1033–1041CrossRefPubMedGoogle Scholar
  4. Bianchi ME (2007) DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol 81:1–5CrossRefPubMedGoogle Scholar
  5. Blumenthal A, Ehlers S, Lauber J, Buer J, Lange C, Goldmann T, Heine H, Brandt E, Reiling N (2006) The Wingless homolog WNT5A and its receptor Frizzled-5 regulate inflammatory responses of human mononuclear cells induced by microbial stimulation. Blood 108:965–973CrossRefPubMedGoogle Scholar
  6. Boyer A, Lapointe E, Zheng X, Cowan RG, Li H, Quirk SM, Demayo FJ, Richards JS, Boerboom D (2010) WNT4 is required for normal ovarian follicle development and female fertility. FASEB J [Epub ahead of print]Google Scholar
  7. Chan CW, Housseau F (2008) The ‘kiss of death’ by dendritic cells to cancer cells. Cell Death Differ 15:58–69CrossRefPubMedGoogle Scholar
  8. Chorro L, Sarde A, Li M, Woollard KJ, Chambon P, Malissen B, Kissenpfennig A, Barbaroux JB, Groves R, Geissmann F (2009) Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network. J Exp Med 206:3089–3100CrossRefPubMedGoogle Scholar
  9. Craig J, Orisaka M, Wang H, Orisaka S, Thompson W, Zhu C, Kotsuji F, Tsang BK (2007) Gonadotropin and intra-ovarian signals regulating follicle development and atresia: the delicate balance between life and death. Front Biosci 12:3628–3639CrossRefPubMedGoogle Scholar
  10. Czernobilsky B, Moll R, Levy R, Franke WW (1985) Co-expression of cytokeratin and vimentin filaments in mesothelial, granulosa and rete ovarii cells of the human ovary. Eur J Cell Biol 37:175–190PubMedGoogle Scholar
  11. Dieterlen-Lièvre F, Pouget C, Bollérot K, Jaffredo T (2006) Are intra-aortic hemopoietic cells derived from endothelial cells during ontogeny? Trends Cardiovasc Med 16:128–139CrossRefPubMedGoogle Scholar
  12. Endo Y, Takahashi M, Fujita T (2006) Lectin complement system and pattern recognition. Immunobiology 211:283–293CrossRefPubMedGoogle Scholar
  13. Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K (2010) Development of monocytes, macrophages, and dendritic cells. Science 327:656–661CrossRefPubMedGoogle Scholar
  14. Gordon MD, Dionne MS, Schneider D, Nusse R (2005) WntD is a feedback inhibitor of Dorsal/NF-kappaB in Drosophila development and immunity. Nature 437:746–749CrossRefPubMedGoogle Scholar
  15. Grissell TV, Chang AB, Gibson PG (2007) Reduced toll-like receptor 4 and substance P gene expression is associated with airway bacterial colonization in children. Pediatr Pulmonol 42:380–385CrossRefPubMedGoogle Scholar
  16. Hajishengallis G, Lambris JD (2010) Crosstalk pathways between Toll-like receptors and the complement system. Trends Immunol 31:154–163CrossRefPubMedGoogle Scholar
  17. Hanukoglu I (2006) Antioxidant protective mechanisms against reactive oxygen species (ROS) generated by mitochondrial P450 systems in steroidogenic cells. Drug Metab Rev 38:171–196CrossRefPubMedGoogle Scholar
  18. Hawlisch H, Köhl J (2006) Complement and Toll-like receptors: key regulators of adaptive immune responses. Mol Immunol 43:13–21CrossRefPubMedGoogle Scholar
  19. He J, Xiao Z, Chen X, Chen M, Fang L, Yang M, Lv Q, Li Y, Li G, Hu J, Xie X (2010) The expression of functional toll-like receptor 4 is associated with proliferation and maintenance of stem cell phenotype in endothelial progenitor cells (EPCs). J Cell Biochem 2010 [Epub ahead of print]Google Scholar
  20. Herath S, Williams EJ, Lilly ST, Gilbert RO, Dobson H, Bryant CE, Sheldon IM (2007) Ovarian follicular cells have innate immune capabilities that modulate their endocrine function. Reproduction 134:683–693CrossRefPubMedGoogle Scholar
  21. Hoshino K, Kaisho T (2008) Nucleic acid sensing Toll-like receptors in dendritic cells. Curr Opin Immunol 20:408–413CrossRefPubMedGoogle Scholar
  22. Iijima N, Thompson JM, Iwasaki A (2008) Dendritic cells and macrophages in the genitourinary tract. Mucosal Immunol 1:451–459CrossRefPubMedGoogle Scholar
  23. Iwasaki A, Medzhitov R (2010) Regulation of adaptive immunity by the innate immune system. Science 327:291–295CrossRefPubMedGoogle Scholar
  24. Jahn L, Fouquet B, Rohe K, Franke WW (1987) Cytokeratins in certain endothelial and smooth muscle cells of two taxonomically distant vertebrate species, Xenopus laevis and man. Differentiation 36:234–254CrossRefPubMedGoogle Scholar
  25. Kalesnikoff J, Galli SJ (2008) New developments in mast cell biology. Nat Immunol 9:1215–1223CrossRefPubMedGoogle Scholar
  26. Khan-Dawood FS, Yusoff DM, Tabibzadeh S (1996) Immunohistochemical analysis of the microanatomy of primate ovary. Biol Reprod 54:734–742CrossRefPubMedGoogle Scholar
  27. Knapp AC, Franke WW (1989) Spontaneous losses of control of cytokeratin gene expression in transformed, non-epithelial human cells occurring at different levels of regulation. Cell 59:67–79CrossRefPubMedGoogle Scholar
  28. Kohchi C, Inagawa H, Nishizawa T, Soma G (2009) ROS and innate immunity. Anticancer Res 29:817–821PubMedGoogle Scholar
  29. Liu Z, Shimada M, Richards JS (2008) The involvement of the Toll-like receptor family in ovulation. J Assist Reprod Genet 25:223–228CrossRefPubMedGoogle Scholar
  30. Löffler S, Horn LC, Weber W, Spanel-Borowski K (2000) The transient disappearance of cytokeratin in human fetal and adult ovaries. Anat Embryol (Berl) 201:207–215CrossRefGoogle Scholar
  31. Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454:428–435CrossRefPubMedGoogle Scholar
  32. Medzhitov R (2010a) Inflammation 2010: new adventures of an old flame. Cell 140:771–776CrossRefPubMedGoogle Scholar
  33. Mellman I, Steinman RM (2001) Dendritic cells: specialized and regulated antigen processing machines. Cell 106:255–258CrossRefPubMedGoogle Scholar
  34. Merad M, Manz MG (2009) Dendritic cell homeostasis. Blood 113:3418–3427CrossRefPubMedGoogle Scholar
  35. Miller YI, Chang MK, Binder CJ, Shaw PX, Witztum JL (2003a) Oxidized low density lipoprotein and innate immune receptors. Curr Opin Lipidol 14:437–445CrossRefPubMedGoogle Scholar
  36. O'Connor TM, O'Connell J, O'Brien DI, Goode T, Bredin C, Shanahan F (2004) The role of substance P in inflammatory disease. J Cell Physiol 201:167–180CrossRefPubMedGoogle Scholar
  37. Oktem O, Oktay K (2008) The ovary: anatomy and function throughout human life. Ann NY Acad Sci 1127:1–9CrossRefPubMedGoogle Scholar
  38. O'Neill LA (2008) The interleukin-1 receptor/Toll-like receptor superfamily: 10 years of progress. Immunol Rev 226:10–18CrossRefPubMedGoogle Scholar
  39. Pan J, Auersperg N (1998) Spatiotemporal changes in cytokeratin expression in the neonatal rat ovary. Biochem Cell Biol 76:27–35CrossRefPubMedGoogle Scholar
  40. Patton WF, Yoon MU, Alexander JS, Chung-Welch N, Hechtman HB, Shepro D (1990) Expression of simple epithelial cytokeratins in bovine pulmonary microvascular. J Cell Physiol 143:140–149CrossRefPubMedGoogle Scholar
  41. Pouget C, Gautier R, Teillet MA, Jaffredo T (2006) Somite-derived cells replace ventral aortic hemangioblasts and provide aortic smooth muscle cells of the trunk. Development 133:1013–1022CrossRefPubMedGoogle Scholar
  42. Rajah R, Glaser EM, Hirshfield AN (1992) The changing architecture of the neonatal rat ovary during histogenesis. Dev Dyn 194:177–192PubMedGoogle Scholar
  43. Reed-Geaghan EG, Savage JC, Hise AG, Landreth GE (2009) CD14 and toll-like receptors 2 and 4 are required for fibrillar A{beta}-stimulated microglial activation. J Neurosci 29:11982–11992CrossRefPubMedGoogle Scholar
  44. Reibiger I, Spanel-Borowski K (2000) Difference in localization of eosinophils and mast cells in the bovine ovary. J Reprod Fertil 118:243–249CrossRefPubMedGoogle Scholar
  45. Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G, Bonasio R, Granucci F, Kraehenbuhl JP, Ricciardi-Castagnoli P (2001) Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2:361–367CrossRefPubMedGoogle Scholar
  46. Richards JS, Liu Z, Shimada M (2008) Immune-like mechanisms in ovulation. Trends Endocrinol Metab 19:191–196CrossRefPubMedGoogle Scholar
  47. Ricken AM, Spanel-Borowski K (1996) Immunolocalization of neurophysin in cytokeratin-positive luteal cells of cows. Histochem Cell Biol 106:487–493CrossRefPubMedGoogle Scholar
  48. Ricken AM, Spanel-Borowski K, Saxer M, Huber PR (1995) Cytokeratin expression in bovine corpora lutea. Histochem Cell Biol 103:345–354CrossRefPubMedGoogle Scholar
  49. Rock KL, Latz E, Ontiveros F, Kono H (2010) The sterile inflammatory response. Annu Rev Immunol 28:321–342CrossRefPubMedGoogle Scholar
  50. Santini D, Ceccarelli C, Mazzoleni G, Pasquinelli G, Jasonni VM, Martinelli GN (1993) Demonstration of cytokeratin intermediate filaments in oocytes of the developing and adult human ovary. Histochemistry 99:311–319CrossRefPubMedGoogle Scholar
  51. Serke H, Vilser H, Nowicki M, Hmeidan FA, Blumenauer V, Hummitzsch K, Lösche A, Spanel-Borowski K (2009) Granulosa cell subtypes respond by autophagy or cell death to oxLDL-dependent activation of the oxidized lipoprotein receptor 1 and toll-like 4 receptor. Autophagy 5:991–1003CrossRefPubMedGoogle Scholar
  52. Serke H, Bausenwein J, Hirrlinger J, Nowicki M, Vilser C, Jogschies P, Hmeidan FA, Blumenauer V, Spanel-Borowski K (2010) Granulosa cell subtypes vary in response to oxidized low-density lipoprotein as regards specific lipoprotein receptors and antioxidant enzyme activity. J Clin Endocrinol Metab 95:3480–3490CrossRefPubMedGoogle Scholar
  53. Shimada M, Hernandez-Gonzalez I, Gonzalez-Robanya I, Richards JS (2006) Induced expression of pattern recognition receptors in cumulus oocyte complexes: novel evidence for innate immune-like functions during ovulation. Mol Endocrinol 20:3228–3239CrossRefPubMedGoogle Scholar
  54. Shimada M, Yanai Y, Okazaki T, Noma N, Kawashima I, Mori T, Richards JS (2008) Hyaluronan fragments generated by sperm-secreted hyaluronidase stimulate cytokine/chemokine production via the TLR2 and TLR4 pathway in cumulus cells of ovulated COCs, which may enhance fertilization. Development 135:2001–2011CrossRefPubMedGoogle Scholar
  55. Spanel-Borowski K, Ricken AM (1997) Varying morphology of bovine granulosa cell cultures. In: Motta PM (ed) Microscopy of reproduction and development: a dynamic approach, pp 91–100Google Scholar
  56. Steinman RM, Banchereau J (2007) Taking dendritic cells into medicine. Nature 449:419–426CrossRefPubMedGoogle Scholar
  57. Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng J, Halle A, Rayner KJ, Boyer L, Zhong R, Frazier WA, Lacy-Hulbert A, Khoury JE, Golenbock DT, Moore KJ (2010) CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol 11:155–161CrossRefPubMedGoogle Scholar
  58. Stocco C, Telleria C, Gibori G (2007) The molecular control of corpus luteum formation, function, and regression. Endocr Rev 28:117–149CrossRefPubMedGoogle Scholar
  59. Takeda K, Akira S (2005) Toll-like receptors in innate immunity. Int Immunol 17:1–14CrossRefPubMedGoogle Scholar
  60. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820CrossRefPubMedGoogle Scholar
  61. Tsikolia N, Merkwitz C, Sass K, Sakurai M, Spanel-Borowski K, Ricken AM (2009) Characterization of bovine fetal Leydig cells by KIT expression. Histochem Cell Biol 132:623–632CrossRefPubMedGoogle Scholar
  62. Tsung A, Zheng N, Jeyabalan G, Izuishi K, Klune JR, Geller DA, Lotze MT, Lu L, Billiar TR (2007) Increasing numbers of hepatic dendritic cells promote HMGB1-mediated ischemia-reperfusion injury. J Leukoc Biol 81:119–128CrossRefPubMedGoogle Scholar
  63. Turvey SE, Broide DH (2010) Innate immunity. J Allergy Clin Immunol 125:S24–32CrossRefPubMedGoogle Scholar
  64. van den Hurk R, Dijkstra G, van Mill FN, Hulshof SC, van den Ingh TS (1995) Distribution of the intermediate filament proteins vimentin, keratin, and desmin. Mol Reprod Dev 41:459–467CrossRefPubMedGoogle Scholar
  65. Vilser C, Hueller H, Nowicki M, Hmeidan FA, Blumenauer V, Spanel-Borowski K (2010) The variable expression of lectin-like oxidized low-density lipoprotein receptor (LOX-1) and signs of autophagy and apoptosis in freshly harvested human granulosa cells depend on gonadotropin dose, age, and body weight. Fertil Steril 93:2706–2715CrossRefPubMedGoogle Scholar
  66. Wasiuk A, de Vries VC, Hartmann K, Roers A, Noelle RJ (2009) Mast cells as regulators of adaptive immunity to tumours. Clin Exp Immunol 155:140–146CrossRefPubMedGoogle Scholar
  67. Zovein AC, Hofmann JJ, Lynch M, French WJ, Turlo KA, Yang Y, Becker MS, Zanetta L, Dejana E, Gasson JC, Tallquist MD, Iruela-Arispe ML (2008) Fate tracing reveals the endothelial origin of hematopoietic stem cells. Cell Stem Cell 3:625–636CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Institute of AnatomyUniversity of LeipzigLeipzigGermany

Personalised recommendations