Part of the Advances in Anatomy, Embryology and Cell Biology book series (ADVSANAT, volume 209)


The ovary is a dynamic organ, because of continuous processes of cell proliferation and regression. They are intense in the reproductive period characterized by the cyclic formation of the mature follicle, and its rupture as well as the development, maintenance and disappearance of the corpus luteum (CL; Oktem and Oktay 2008).


Major Histocompatibility Complex Granulosa Cell Danger Signal Vascular Endothelial Cell Growth Factor Preovulatory Follicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adashi EY (1994) Endocrinology of the ovary. Hum Reprod 9:815–827PubMedGoogle Scholar
  2. Adashi EY, Leung PCK (eds) (1993) The ovary. Raven, New YorkGoogle Scholar
  3. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252CrossRefPubMedGoogle Scholar
  4. Berisha B, Schams D (2005) Ovarian function in ruminants. Domest Anim Endocrinol 29:305–317CrossRefPubMedGoogle Scholar
  5. Best CL, Pudney J, Welch WR, Burger N, Hill JA (1996) Localization and characterization of white blood cell populations within the the human ovary throughout the menstrual cycle and menopause. Hum Reprod 11:790–797PubMedGoogle Scholar
  6. Bianchi ME (2007) DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol 81:1–5CrossRefPubMedGoogle Scholar
  7. Brännström M, Enskog A (2002) Leukocyte networks and ovulation. J Reprod Immunol 57:47–60CrossRefPubMedGoogle Scholar
  8. Brännström M, Norman RJ, Seamark RF, Robertson SA (1994a) Rat ovary produces cytokines during ovulation. Biol Reprod 50:88–94CrossRefPubMedGoogle Scholar
  9. Brännström M, Pascoe V, Norman RJ, McClure N (1994b) Localization of leukocyte subsets in the follicle wall and in the corpus luteum. Fertil Steril 61:488–495PubMedGoogle Scholar
  10. Craig J, Orisaka M, Wang H, Orisaka S, Thompson W, Zhu C, Kotsuji F, Tsang BK (2007) Gonadotropin and intra-ovarian signals regulating follicle development and atresia: the delicate balance between life and death. Front Biosci 12:3628–3639CrossRefPubMedGoogle Scholar
  11. Del Canto F, Sierralta W, Kohen P, Munoz A, Strauss JF 3rd, Devoto L (2007) Features of natural and gonadotropin-releasing hormone antagonist-induced corpus. J Clin Endocrinol Metab 92:4436–4443CrossRefPubMedGoogle Scholar
  12. Devoto L, Fuentes A, Kohen P, Cespedes P, Palomino A, Pommer R, Munoz A, Strauss JF 3rd (2009) The human corpus luteum: life cycle and function in natural cycles. Fertil Steril 92:1067–1079CrossRefPubMedGoogle Scholar
  13. Espey LL (1994) Current status of the hypothesis that mammalian ovulation is comparable to an inflammatory reaction. Biol Reprod 50:233–238CrossRefPubMedGoogle Scholar
  14. Espey LL (2006) Comprehensive analysis of ovarian gene expression during ovulation using differential display. Methods Mol Biol 317:219–241PubMedGoogle Scholar
  15. Ferguson TA, Green DR, Griffith TS (2002) Cell death and immune privilege. Int Rev Immunol 21:153–172CrossRefPubMedGoogle Scholar
  16. Foell D, Wittkowski H, Vogl T, Roth J (2007) S100 proteins expressed in phagocytes: a novel group of damage-associated molecular pattern molecules. J Leukoc Biol 81:28–37CrossRefPubMedGoogle Scholar
  17. Fraser HM, Duncan WC (2005) Vascular morphogenesis in the primate ovary. Angiogenesis 8:101–116CrossRefPubMedGoogle Scholar
  18. Fraser HM, Wulff C (2001) Angiogenesis in the primate ovary. Reprod Fertil Dev 13:557–566CrossRefPubMedGoogle Scholar
  19. Fraser HM, Wulff C (2003) Angiogenesis in the corpus luteum. Reprod Biol Endocrinol 1:88CrossRefPubMedGoogle Scholar
  20. Gougeon A (1993) Dynamics of human follicular growth: a morphologic perspective. In: Adashi EY, Leung PCK (eds) The ovary. Raven, New York, pp 21–39Google Scholar
  21. Horne AW, Stock SJ, King AE (2008) Innate immunity and disorders of the female reproductive tract. Reproduction 135:739–749CrossRefPubMedGoogle Scholar
  22. Hussein MR (2005) Apoptosis in the ovary: molecular mechanisms. Hum Reprod Update 11:162–177CrossRefPubMedGoogle Scholar
  23. Iwasaki A, Medzhitov R (2010) Regulation of adaptive immunity by the innate immune system. Science 327:291–295CrossRefPubMedGoogle Scholar
  24. Keller M, Ruegg A, Werner S, Beer HD (2008) Active caspase-1 is a regulator of unconventional protein secretion. Cell 132:818–831CrossRefPubMedGoogle Scholar
  25. Kim J, Bagchi IC, Bagchi MK (2009) Signaling by hypoxia-inducible factors is critical for ovulation in mice. Endocrinology 150:3392–3400CrossRefPubMedGoogle Scholar
  26. Klune JR, Dhupar R, Cardinal J, Billiar TR, Tsung A (2008) HMGB1: endogenous danger signaling. Mol Med 14:476–484CrossRefPubMedGoogle Scholar
  27. Krohn PL (1977) Transplantation of the ovary. In: Zuckerman S, Weir B (eds) The ovary, vol 2. Acadmic, New York, pp 101–127Google Scholar
  28. Liu Z, Shimada M, Richards JS (2008) The involvement of the Toll-like receptor family in ovulation. J Assist Reprod Genet 25:223–228CrossRefPubMedGoogle Scholar
  29. Matsuda-Minehata F, Inoue N, Goto Y, Manabe N (2006) The regulation of ovarian granulosa cell death by pro- and anti-apoptotic. J Reprod Dev 52:695–705CrossRefPubMedGoogle Scholar
  30. Matzinger P (2002) The danger model: a renewed sense of self. Science 296:301–305CrossRefPubMedGoogle Scholar
  31. Matzinger P (2007) Friendly and dangerous signals: is the tissue in control? Nat Immunol 8:11–13CrossRefPubMedGoogle Scholar
  32. Mayer G (2009) Innate (non-specific) immunity. Immunology – chapter one. In: University of South Carolina (ed) Microbiology and immunology textbook, pp 1–10Google Scholar
  33. Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454:428–435CrossRefPubMedGoogle Scholar
  34. Medzhitov R (2010a) Inflammation 2010: new adventures of an old flame. Cell 140:771–776CrossRefPubMedGoogle Scholar
  35. Mellman I, Steinman RM (2001) Dendritic cells: specialized and regulated antigen processing machines. Cell 106:255–258CrossRefPubMedGoogle Scholar
  36. Munitz A, Levi-Schaffer F (2004) Eosinophils: ‘new’ roles for ‘old’ cells. Allergy 59:268–275CrossRefPubMedGoogle Scholar
  37. Niederkorn JY (2006) See no evil, hear no evil, do no evil: the lessons of immune privilege. Nat Immunol 7:354–359CrossRefPubMedGoogle Scholar
  38. Nishimura R, Okuda K (2010) Hypoxia is important for establishing vascularisation during corpus luteum formation in cattle. J Reprod Dev 56:110–116CrossRefPubMedGoogle Scholar
  39. Niswender GD, Juengel JL, Silva PJ, Rollyson MK, McIntush EW (2000) Mechanisms controlling the function and life span of the corpus luteum. Physiol Rev 80:1–29PubMedGoogle Scholar
  40. Oktem O, Oktay K (2008) The ovary: anatomy and function throughout human life. Ann NY Acad Sci 1127:1–9CrossRefPubMedGoogle Scholar
  41. O'Neill LA (2008) The interleukin-1 receptor/Toll-like receptor superfamily: 10 years of progress. Immunol Rev 226:10–18CrossRefPubMedGoogle Scholar
  42. O'Neill LA, Bowie AG (2007) The family of five: TIR-domain-containing adaptors in Toll-like receptor. Nat Rev Immunol 7:353–364CrossRefPubMedGoogle Scholar
  43. Paterson HM, Murphy TJ, Purcell EJ, Shelley O, Kriynovich SJ, Lien E, Mannick JA, Lederer JA (2003) Injury primes the innate immune system for enhanced Toll-like receptor reactivity. J Immunol 171:1473–1483PubMedGoogle Scholar
  44. Peng Y, Martin DA, Kenkel J, Zhang K, Ogden CA, Elkon KB (2007) Innate and adaptive immune response to apoptotic cells. J Autoimmun 29:303–309CrossRefPubMedGoogle Scholar
  45. Peters KG, Kontos CD, Lin PC, Wong AL, Rao P, Huang L, Dewhirst MW, Sankar S (2004) Functional significance of Tie2 signaling in the adult vasculature. Recent Prog Horm Res 59:51–71CrossRefPubMedGoogle Scholar
  46. Reynolds LP, Grazul-Bilska AT, Redmer DA (2000) Angiogenesis in the corpus luteum. Endocrine 12:1–9CrossRefPubMedGoogle Scholar
  47. Richards JS, Russell DL, Ochsner S, Espey LL (2002) Ovulation: new dimensions and new regulators of the inflammatory-like response. Annu Rev Physiol 64:69–92CrossRefPubMedGoogle Scholar
  48. Richards JS, Liu Z, Shimada M (2008) Immune-like mechanisms in ovulation. Trends Endocrinol Metab 19:191–196CrossRefPubMedGoogle Scholar
  49. Rock KL, Latz E, Ontiveros F, Kono H (2010) The sterile inflammatory response. Annu Rev Immunol 28:321–342CrossRefPubMedGoogle Scholar
  50. Rohm F, Spanel-Borowski K, Eichler W, Aust G (2002) Correlation between expression of selectins and migration of eosinophils into the bovine ovary during the periovulatory period. Cell Tissue Res 309:313–322CrossRefPubMedGoogle Scholar
  51. Sandri S, Rodriguez D, Gomes E, Monteiro HP, Russo M, Campa A (2008) Is serum amyloid A an endogenous TLR4 agonist? J Leukoc Biol 83:1174–1180CrossRefPubMedGoogle Scholar
  52. Schams D, Berisha B (2004) Regulation of corpus luteum function in cattle – an overview. Reprod Domest Anim 39:241–251CrossRefPubMedGoogle Scholar
  53. Serke H, Vilser H, Nowicki M, Hmeidan FA, Blumenauer V, Hummitzsch K, Lösche A, Spanel-Borowski K (2009) Granulosa cell subtypes respond by autophagy or cell death to oxLDL-dependent activation of the oxidized lipoprotein receptor 1 and toll-like 4 receptor. Autophagy 5:991–1003CrossRefPubMedGoogle Scholar
  54. Shimada M, Yanai Y, Okazaki T, Noma N, Kawashima I, Mori T, Richards JS (2008) Hyaluronan fragments generated by sperm-secreted hyaluronidase stimulate cytokine/chemokine production via the TLR2 and TLR4 pathway in cumulus cells of ovulated COCs, which may enhance fertilization. Development 135:2001–2011CrossRefPubMedGoogle Scholar
  55. Spanel-Borowski K, Thor-Wiedemann S, Pilgrim C (1984) Cell proliferation in the dog (beagle) ovary during proestrus and early estrus. Acta Anat (Basel) 118:153–158CrossRefGoogle Scholar
  56. Steinman RM, Banchereau J (2007) Taking dendritic cells into medicine. Nature 449:419–426CrossRefPubMedGoogle Scholar
  57. Stocco C, Telleria C, Gibori G (2007) The molecular control of corpus luteum formation, function, and regression. Endocr Rev 28:117–149CrossRefPubMedGoogle Scholar
  58. Stouffer RL, Xu F, Duffy DM (2007) Molecular control of ovulation and luteinization in the primate follicle. Front Biosci 12:297–307CrossRefPubMedGoogle Scholar
  59. Takeda K, Akira S (2005) Toll-like receptors in innate immunity. Int Immunol 17:1–14CrossRefPubMedGoogle Scholar
  60. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820CrossRefPubMedGoogle Scholar
  61. Tsung A, Zheng N, Jeyabalan G, Izuishi K, Klune JR, Geller DA, Lotze MT, Lu L, Billiar TR (2007) Increasing numbers of hepatic dendritic cells promote HMGB1-mediated ischemia-reperfusion injury. J Leukoc Biol 81:119–128CrossRefPubMedGoogle Scholar
  62. Turvey SE, Broide DH (2010) Innate immunity. J Allergy Clin Immunol 125:S24–32CrossRefPubMedGoogle Scholar
  63. van Lierop PPE, Samsom JN, Escher JC, Nieuwenhuis EE (2009) Role of the innate immune system in the pathogenesis of inflammatory bowel disease. J Pediatr Gastroenterol Nutr 48:142–151CrossRefPubMedGoogle Scholar
  64. Van Wenzel IL, Dharmarajan AM, Lavranos TC, Rodgers RJ (1999) Evidence for alternative pathways of granulosa cell death in healthy and slightly. Endocrinology 140:2602–2612CrossRefGoogle Scholar
  65. Wu R, van der Hoek KH, Ryan NK, Norman RJ, Robker RL (2004) Macrophage contributions to ovarian function. Hum Reprod Update 10:119–133CrossRefPubMedGoogle Scholar
  66. Zeleznik AJ (1993) Dynamics of primate follicular growth: a physiologic perspective. In: Adashi EY, Leung PCK (eds) The ovary. Raven, New York, pp 41–55Google Scholar
  67. Zhan R, Leng X, Liu X, Wang X, Gong J, Yan L, Wang L, Wang Y, Wang X, Qian LJ (2009) Heat shock protein 70 is secreted from endothelial cells by a non-classical pathway involving exosomes. Biochem Biophys Res Commun 387:229–233CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Institute of AnatomyUniversity of LeipzigLeipzigGermany

Personalised recommendations