Skip to main content

Abstract

Task-structured probabilistic input/output automata (Task-PIOAs) are concurrent probabilistic automata that, among other things, have been used to provide a formal framework for the universal composability paradigms of protocol security. One of their advantages is that that they allow one to distinguish high-level nondeterminism that can affect the outcome of the protocol, from low-level choices, which can’t. We present an alternative approach to analyzing the structure of Task-PIOAs that relies on ordered sets. We focus on two of the components that are required to define and apply Task-PIOAs: discrete probability theory and automata theory. We believe our development gives insight into the structure of Task-PIOAs and how they can be utilized to model crypto-protocols. We illustrate our approach with an example from anonymity, an area that has not previously been addressed using Task-PIOAs. We model Chaum’s Dining Cryptographers Protocol at a level that does not require cryptographic primitives in the analysis. We show via this example how our approach can leverage a proof of security in the case a principal behaves deterministically to prove security when that principal behaves probabilistically.

The authors wish to thank the Center for Discrete Mathematics and Theoretical Computer Science and the DIMACS Special Focus on Communication Security and Information Privacy for their support that allowed us to gather at Rutgers to work on this project for a week in May/June, 2008.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abadi, M., Gordon, A.: A calculus for cryptographic protocols: The spi calculus. Information and Computation 148, 1–70 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abramsky, S., Jung, A.: Domain theory. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. 3, pp. 1–168. Clarendon Press, Oxford (1994)

    Google Scholar 

  3. de Alfaro, L., Henzinger, T., Jhala, R.: Compositional methods for probabilistic systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 351–365. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Bhargava, M., Palamidessi, C.: Probabilistic anonymity. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 171–185. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic Protocols, http://eprint.iacr.org/2000/067

  6. Canetti, R., Lynch, N., et al.: Using Probabilistic I/O Automata to Analyze an Oblivious Transfer Protocol (preprint), http://hdl.handle.net/1721.1/33154

  7. Chatzikokolakis, K., Palamidessi, C.: Making Random Choices Invisible to the Scheduler. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 42–58. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Chatzikokalakis, K., Palamidessi, C., Panangaden, P.: Anonymity protocols as noisy channels. Information and Computation 206, 378–401 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chaum, D.: The dining cryptographers problem: Unconditional sender and recipient untraceability. Journal of Cryptology 1, 65–75 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Approximating Labeled Markov Processes. Information and Computation 184(1), 160–200 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Garcia, F., van Rossum, P., Sokolova, A.: Probabilistic anonymity and admissible schedulers, June 2 (2007) arXiv:0706.1019, http://eprintweb.org/S/authors/All/so/Sokolova

  12. Goldreich, O.: Secure Multi-party Computation, http://www.wisdom.weizmann.ac.il/~oded/pp.html

  13. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity, or All languages in NP have Zero-knowledge proofs. JACM 38, 691–729 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hasuo, I., Kawabe, Y.: Probabilistic anonymity via coalgebraic simulations. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 379–394. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Jones, C.: Probabilistic non-determinism. University of Edinburgh, Edinburgh (1992)

    Google Scholar 

  16. Larsen, K.G., Skou, A.: Bisimulation through Probabilistic Testing. Information and Computation 94(1), 1–28 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lincoln, Mitchell, P.J.C., Mitchell, M., Scedrov, A.: A Probabilistic Poly-Time Framework for Protocol Analysis. In: ACM Conference on Computer and Communications Security, pp. 112–121 (1998)

    Google Scholar 

  18. Mislove, M.: Nondeterminism and probabilistic choice: obeying the laws. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 350–364. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  19. Mislove, M., Pavlovic, D., Worrell, J.: Labelled Markov Processes as Generalized Stochastic Relations. Electronic Notes Theoretical Computer Science, vol. 172, pp. 459–478 (2007)

    Google Scholar 

  20. Mitchell, J., Ramanathan, A., Scedrov, A., Teague, V.: A probabilistic polynomial-time process calculus for the analysis of cryptographic protocols. Theoretical Computer Science 353, 118–164 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Schneider, S., Sidiropoulos, A.: CSP and anonymity. In: Martella, G., Kurth, H., Montolivo, E., Bertino, E. (eds.) ESORICS 1996. LNCS, vol. 1146, pp. 198–218. Springer, Heidelberg (1996), http://dx.doi.org/10.1007/3-540-61770-1_38

    Chapter  Google Scholar 

  22. Segala, R.: Modeling and Verification of Randomized Distributed Real-time Systems, PhD Thesis, MIT Technical Report MIT/LCS/TR-676 (1995)

    Google Scholar 

  23. Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. Nordic Journal of Computing 2, 250–273 (1995)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jaggard, A.D., Meadows, C., Mislove, M., Segala, R. (2010). Reasoning about Probabilistic Security Using Task-PIOAs. In: Armando, A., Lowe, G. (eds) Automated Reasoning for Security Protocol Analysis and Issues in the Theory of Security. ARSPA-WITS 2010. Lecture Notes in Computer Science, vol 6186. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16074-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16074-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16073-8

  • Online ISBN: 978-3-642-16074-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics