Skip to main content

Abstract

Species of the genus Pyrus, commonly referred to as pears, are pome fruits related to apples and quince. There are at least 26 widely recognized primary species and 10 naturally occurring interspecific hybrid taxa, which are distributed in Europe, temperate Asia, and mountainous areas of northern Africa. There is little well-documented information on the conservation status of pear species, although several taxa are listed in the IUCN Red List. Conservation efforts tend to be mostly in ex situ collections of cultivars, and more seed collection from wild populations is desirable. All species of Pyrus are intercrossable and there are no major incompatibility barriers to . There are four main cultivated species, which have been the focus of most intra- and interspecific hybridization for the development of scion cultivars. However, several other species are sources of valuable traits, principally for the development of rootstocks, or directly for ornamental cultivars. Intergeneric hybridization is difficult and hybrid lethality and low fertility of the hybrids is common. However, ×Sorbopyrus auricularis is a naturally occurring intergeneric hybrid of mountain ash and pear, and ×Pyronia veitchii is a hybrid of Pyrus pyrifolia and Cydonia oblonga. Various apple × pear hybrids have also been produced, especially when special techniques such as embryo rescue are used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al Maarri K, Haddad S, Fallouh I (2007) Selections of Pyrus syriaca as promising rootstocks for pear cultivars. Acta Hortic 732:217–220

    Google Scholar 

  • Aldasoro JJ, Aedo C, Munoz-Garmendia F (1996) The genus Pyrus L. (Rosaceae) in south-west Europe and North Africa. Bot J Linn Soc 121:143–158

    Google Scholar 

  • Aldwinckle HS, Iizuka M, van Sloten DH (1986) Temperate fruit crop germplasm in China. Plant Genet Resour Newsl 68:35–41

    Google Scholar 

  • Amri A, Valkoun J, Shehadeh A (2002) Promoting in situ conservation of agrobiodiversity in West Asia. ICARDA Caravan 17:31–33

    Google Scholar 

  • Anderson HW (1920) Diseases of Illinois fruits; fire blight of apple; pear blight or fire blight. Ill Agric Exp Stat Circ 241(41–45):74–78

    Google Scholar 

  • Andreieş N (1983) Stadiul ameliorarii parului privind rezistenta la boli si daunatori la Statiunea de cercetare si prodcutie pomicola Voinesti-Dimbovita. Probleme de Genetica Teoretica si Aplicata 15:305–311

    Google Scholar 

  • Andreieş N (2002) Achievements and prospectives in pear breeding at the Fruit Research Station Voinesti, Romania. Acta Hortic 596:261–264

    Google Scholar 

  • Anjou K (1954) Winter injury of apples and pears at Balsgard, 1953. Sverig Pomol Foren Arsskr 54:139–147 (in Swedish)

    Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    Article  CAS  Google Scholar 

  • Bailey CH, Hough LF (1961) A new pear industry for New Jersey. NJ State Hortic Soc Hortic Newsl 42:105–107

    Google Scholar 

  • Bailey CH, Hough LF (1962) Blight resistant pears look promising for garden state. NJ Agric 44:14–16

    Google Scholar 

  • Banno K, Ishikawa H, Hamauzu Y, Tabira H (1999) Identification of a RAPD marker linked to the susceptible gene of black spot disease in Japanese pear. J Jpn Soc Hortic Sci 68:476–481

    Article  CAS  Google Scholar 

  • Banno K, Liu Y, Ishikawa H, Nakano S, Nobatake S (2000) Isozymes and RAPD markers to identify the parenthood of Japanese pear ‘Kuratsuki.’ J Jpn Soc Hortic Sci 69:208–213

    Article  CAS  Google Scholar 

  • Banno K, Hirano Y, Ishikawa H, Kakegawa M (2003) Breeding and characteristics of symmetric intergeneric hybrids between apple and pear. Acta Hortic 622:265–276

    CAS  Google Scholar 

  • Barbosa W, Pommer CV, Tombolato AFC, Meletti LMM, de Arruda-Veiga RF, Moura MF, Pio R (2007) Asian pear tree breeding for subtropical areas of Brazil. Fruits 62:21–26

    Article  Google Scholar 

  • Bassil NV, Postman JD, Neou C (2005) Pyrus microsatellite markers from GenBank sequences. Acta Hortic 671:289–292

    CAS  Google Scholar 

  • Beck J (1958) Search continues for disease resistant pear. Rep Lafayette IN 1(3):6–7

    Google Scholar 

  • Bell RL (1990) Pears (Pyrus). In: Moore JN, Ballington JR (eds) Genetic resources of temperate fruit and nut crops 2. International Society for Horticultural Science, Wageningen, The Netherlands. Acta Hortic 290:657–697

    Google Scholar 

  • Bell RL (1992) Additional East European Pyrus germplasm with resistance to pear psylla nymphal feeding. HortScience 27:412–413

    Google Scholar 

  • Bell RL (2003) Resistance to pear psylla nymphal feeding of germplasm from Central Europe. Acta Hortic 622:343–345

    Google Scholar 

  • Bell RL, Hough LF (1986) Interspecific and intergeneric hybridization of Pyrus. HortScience 21:62–64

    Google Scholar 

  • Bell RL, Janick J (1990) Quantitative genetic analysis of fruit quality in pear. J Am Soc Hortic Sci 115:829–834

    Google Scholar 

  • Bell RL, Reed BM (2002) In vitro tissue culture of pear: Advances in techniques for micropropagation and germplasm preservation. Acta Hortic 596:412–418

    Google Scholar 

  • Bell RL, Stuart LC (1990) Resistance in Eastern European Pyrus germplasm to pear psylla nymphal feeding. HortScience 25:789–791

    Google Scholar 

  • Bell RL, van der Zwet T (1988) Susceptibility of Pyrus germplasm to Fabraea leaf spot. Acta Hortic 224:229–236

    Google Scholar 

  • Bell RL, van der Zwet T (1998) Breeding for host resistance to pear psylla: evaluation of parental germplasm. Acta Hortic 484:471–475

    Google Scholar 

  • Bell RL, van der Zwet T (2005) Host resistance in Pyrus to Fabraea leaf spot. HortScience 40:21–23

    Google Scholar 

  • Bell RL, Janick J, Zimmerman RH, van der Zwet T (1977) Estimation of heritability and combining ability for fire blight resistance in pear. J Am Soc Hortic Sci 102:133–138

    Google Scholar 

  • Bell RL, Quamme HA, Layne REC, Skirvin RM (1996) Pears. In: Janick J, Moore JN (eds) Fruit breeding, vol 1. Tree and tropical fruits. Wiley, New York, pp 441–514

    Google Scholar 

  • Bell RL, Scorza R, Srinivasan C, Webb K (1999) Transformation of ‘Beurre Bosc’ pear with the rol C gene. J Am Soc Hortic Sci 124:570–574

    CAS  Google Scholar 

  • Bellini E, Nin S (2002) Breeding for new traits in pear. Acta Hortic 596:217–224

    Google Scholar 

  • Blaser J (1998) Biodiversity and sustainable use of Kyrgyzstan’s walnut-fruit forests. In: Proceedings of the seminar, Arslanbob, Dzala-abab oblast, Kyrgzstan, 4–8 Sept 1995. IUCN, The World Conservation Union, Cambridge, UK, 182 p

    Google Scholar 

  • Bonany J, Dolcet-Sanjuan R, Claveria E, Iglesias I, Asin L, Simard MH (2005) Breeding of pear rootstocks. First evaluation of new interspecific rootstocks for tolerance to lime-induced chlorosis and induced vigour under field conditions. Acta Hortic 671:239–246

    Google Scholar 

  • Bouvier L, Zhang YX, Lespinasse Y (1993) Two methods of haploidization in pear, Pyrus communis L.: greenhouse seedling selection, in situ parthenogenesis induced by irradiated pollen. Theor Appl Genet 87:229–232

    Article  Google Scholar 

  • Bouvier L, Guérif P, Djulbic M, Durel C-E, Chevreau E, Lespinasse Y (2002) Chromosome doubling of pear haploid plants and homozygosity assessment using isozyme and microsatellite markers. Euphytica 123:255–262

    Article  CAS  Google Scholar 

  • Branişte N, Andrieş N, Ghidra V (2008) Pear genetic breeding to improve the Romanian varieties. Acta Hortic 800:491–496

    Google Scholar 

  • Brewer LR, Alspach PA, White AG (2002) Variation in the susceptibility of pear seedlings to damage by the larvae of the sawfly (Caliroa cerasi). Acta Hortic 596:571–574

    Google Scholar 

  • Briolini G, Cappeli A, Rivalta L, Rosati P (1988) Observations on Pyrus communis resistance to Psylla pyri. Acta Hortic 224:211–221

    Google Scholar 

  • Browicz K (1972) Materials for a flora of Turkey XXVI. Notes R Bot Gard Edinb 31:323

    Google Scholar 

  • Cao YF, Huang LS, Li SL, Yang YL (2002) Genetics of ploidy and hybridized combination types for polyploid breeding in pear. Acta Hort 587:207–210

    Google Scholar 

  • Cerezo M, Socias y Company R (1989) Isozymatic variability in pear pollen. Acta Hortic 256:111–118

    Google Scholar 

  • Chevalier M, Bernard C, Tellier M, Lespinasse Y, Filmond R, LeLezec M (2004) Variability in the reaction of several pear (Pyrus communis) cultivars to different inocula of Venturia pyrina. Acta Hortic 663:177–181

    Google Scholar 

  • Chevreau E, Leuliette S, Gallet M (1997) Inheritance and linkage of isozyme loci in pear (Pyrus communis L.). Theor Appl Genet 94:498–506

    Article  CAS  Google Scholar 

  • Conner PJ, Brown SK, Weeden NF (1997) Randomly amplified polymorphic DNA-based genetic linkage maps of three apple cultivars. J Am Soc Hortic Sci 122:350–359

    CAS  Google Scholar 

  • Crane MB, Lewis D (1949) Genetical studies in pears. V. Vegetative and fruit characters. Heredity 3:85–97

    Google Scholar 

  • Culley TM, Hardiman NA (2009) The role of intraspecific hybridization in the evolution of invasiveness: a case study of the ornamental pear tree Pyrus calleryana. Biol Invas 11:1107–1119

    Article  Google Scholar 

  • Davis PH (1972) Flora of Turkey and the east Aegean islands, vol 4. University of Edinburgh Press, Scotland

    Google Scholar 

  • Department of Horticulture, Zhejiang Agricultural University (1978) Studies on the inheritance of the precocity in pears. Acta Genet Sin 5:220–226 (in Chinese)

    Google Scholar 

  • Deyton DE, Cummins JC (1991) History of pear breeding in Tennessee. Fruit Var J 45:143–146

    Google Scholar 

  • Dickson EE, Arumuganathan K, Kresovich S, Doyle JJ (1992) Nuclear DNA content variation within the Rosaceae. Am J Bot 79:1081–1086

    Article  Google Scholar 

  • Dimitrov S, Delipavlov D (1976) A natural intergeneric hybrid between apple and pear. Priroda, Bulgaria 25(6):50–51 (in Bulgarian)

    Google Scholar 

  • Dolmatov EA, Sedov EN, Panova NI, Sedysheva GA (1998) Studying the morphological inhomogeneity of the apomictic progeny of the pear. Russ Agric Sci 7:16–18

    Google Scholar 

  • Dondini L, Malaguti TS, Bazzi C, Sansavini S (2002) Reactivity of pear seedlings to fire blight (Erwinia amylovora). Acta Hortic 596:207–210

    CAS  Google Scholar 

  • Dondini L, Pierantoni L, Gaiotti F, Chiodini R, Tartarini S, Bazzi C, Sansavini S (2004) Identifying QTLs for fire blight resistance via a European pear (Pyrus communis L.) genetic linkage map. Mol Breed 14:407–418

    Article  CAS  Google Scholar 

  • Dondini L, Pierantoni L, Ancarani V, D’Angelo M, Cho KH, Shin IS, Musacchi SR, Kang SJ, Sansavini S (2008) The inheritance of the red colour character in European pear (Pyrus communis) and its map position in the mutated cultivar ‘Max Red Bartlett.’ Plant Breed 127:524–526

    Google Scholar 

  • Drain BD (1943) Southern pear breeding. Am Soc Hortic Sci Proc 42:301–304

    Google Scholar 

  • Drain BD (1954) Blight resistant pears of today and tomorrow. Trans Ill Hortic Soc 8:125–127

    Google Scholar 

  • Druart P (1985) In vitro germplasm preservation technique for fruit trees. In Vitro Tech 1985:167–171

    Google Scholar 

  • Endtmann KJ (1999) Taxonomy and nature conservation of wild pear (Pyrus pyraster) and its congeneric taxa. Beitrage fur Forstwirtschaft und Landschaftsokologie 33:123–131

    Google Scholar 

  • Enikeev HK (1959) The results of interspecific hybridization of fruit trees and soft fruits. Agrobiology 6:924–928 (in Russian)

    Google Scholar 

  • European Cooperative Programme for Plant Genetic Resources (2009a) The ECP/GR Pyrus Database: http://pyrus.cra.wallonie.be. Accessed 12 June 2009

  • European Cooperative Programme for Plant Genetic Resources (2009b) EURISCO Catalogue: http://eurisco.ecpgr.org. Accessed 12 June 2009

  • Evans RC, Campbell CS (2002) The origin of the apple subfamily (Maloideae; Rosaceae) is clarified by DNA sequence data from duplicated GBSSI genes. Am J Bot 89:1478–1484

    Article  CAS  Google Scholar 

  • Evans KM, Govan CL, Fernandez-Fernandez F (2008) A new gene for resistance to Dysaphis pyri in pear and identification of flanking microsatellite markers. Genome 51:1026–1031

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Fernadez F, Harvey NG, James CM (2006) Isolation and characterization of polymorphic microsatellite markers from European pear (Pyrus communis L.). Mol Ecol Notes 6:1039–1041

    Article  CAS  Google Scholar 

  • Flaishman MA, Shlizerman L, Cohen Y, Kerem Z, Sivan L (2005) Expression of the health beneficial stilbenes in transgenic ‘Spadona’ pear (Pyrus communis L.). Acta Hortic 671:283–288

    CAS  Google Scholar 

  • Food and Agriculture Organization of the United Nations (2010) FAOSTAT. http://faostat.fao.org/site/567/DesktopDefault.aspx?pageID=567#ancor. Accessed 14 October 2010

  • Gao M, Matsuta N, Murayama H, Toyomasu T, Mitsuhashi W, Dadekar A, Tao R, Nishimura K (2007) Gene expression and ethylene production in transgenic pear (Pyrus communis cv. ‘La France’) with sense or antisense cDNA encoding ACC oxidase. Plant Sci 173:32–42

    Article  CAS  Google Scholar 

  • Golisz A, Basak A, Zagaja SW (1971) Pear cultivar breeding. In: Pieniazek SA (ed.) Studies on some local Polish fruit species, varieties and clones and on those recently introduced to Poland with respect to their breeding value and other characters. Nov 1, 1966, to Oct 31, 1971. Res Inst Pomology, Skierniewice, Poland

    Google Scholar 

  • Gonai T, Manabe T, Inoue E, Hayashi M, Yamamoto T, Hayashi T, Sakuma F, Kasumi M (2006) Overcoming hybrid lethality in a cross between Japanese pear and apple using gamma irradiation and confirmation of hybrid status using flow cytometry and SSR markers. Sci Hortic 109:43–47

    Article  CAS  Google Scholar 

  • Gonai T, Terakami S, Nishitani C, Yamamoto T, Kasumi M (2009) The validity of marker-assisted selection using DNA markers linked to a pear scab resistance gene (Vnk) in two populations. J Jpn Soc Hortic Sci 78:49–54

    Article  CAS  Google Scholar 

  • Gorshkova LI (1980) A comparative study of fruit anatomy in apple-pear hybrids. Byul Nauch Inform Tsentr Genet Lab 34:59–62

    Google Scholar 

  • Gorshkova LI, Vanin II (1973) Resistance of apple-pear hybrids to scab. Byul Nauch Inform Tsentr Genet Lab im I V Michurina 20:73–75

    Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137

    CAS  PubMed  Google Scholar 

  • Güner A, Zielinski J (1996) The conservation status of Turkish woody flora. In: Hunt DR (ed) Temperate trees under threat. Proceedings of international dendrological society symposium on the conservation status of temperate trees, 30 Sept–1 Oct 1994, University of Bonn, Bonn, Germany, pp 12

    Google Scholar 

  • Hancock JF, Lobos GA (2008) Pears. In: Hancock JF (ed) Temperate fruit crop breeding: germplasm to genomics. Springer, New York, NY, pp 299–336

    Chapter  Google Scholar 

  • Harris MK (1973) Host resistance to the pear psylla in a P. communis× P. ussuriensishybrid. Environ Entomol 2:883–887

    Google Scholar 

  • Harris MK, Lamb RC (1973) Resistance to the pear psylla in pears with Pyrus ussuriensis lineage. J Am Soc Hortic Sci 98:378–381

    Google Scholar 

  • Hartman H (1957) Catalog and evaluation of the pear collection at the Oregon Agriculture Experiment Station. OR Agricultural Experiment Station Technical Bulletin 41, OR, USA, 80 pp

    Google Scholar 

  • Hedrick UP, Howe GH, Taylor OM, Francis EH, Tukey HB (1921) The pears of New York. 29th annual report, vol 2, part 2. Department of Agriculture, New York, NY

    Google Scholar 

  • Hibino H, Schneider H (1970) Mycoplasmalike bodies in sieve tubes of pear trees affected with pear decline. Phytopathology 60:499–501

    Article  Google Scholar 

  • Hiroe I, Nishimura S, Sato M (1958) Pathochemical studies on Alternaria kikuchiana. On toxins secreted by the fungus. Trans Tottori Soc Agric Sci 11:291–299 (in Japanese)

    Google Scholar 

  • Hou WC, Lin RD, Cheng KT, Hung YT, Cho CH, Chen CH, Sy H, Lee MH (2003) Free radical scavenging activity of Taiwanese native plants. Phytomedicine 10:170–175

    Article  CAS  PubMed  Google Scholar 

  • Hough LF (1944) The new pear breeding project. Ill State Hortic Soc Trans 78:106–113

    Google Scholar 

  • Hough LF, Bailey CH (1968) Star, Lee, and Mac – three blight resistant fresh market pears from New Jersey. Fruit Var Hortic Dig 22:43–45

    Google Scholar 

  • Iketani H, Manabe T, Matsuta N, Akihama T, Hayashi T (1998) Incongruence between RFLPs of chloroplast DNA and morphological classification in east Asian pear (Pyrus spp.). Genet Resour Crop Evol 45:533–539

    Article  Google Scholar 

  • Iketani H, Abe K, Yamamoto T, Kotobuki K, Sato Y, Saito T, Terai O, Matsuta N, Hayashi T (2001) Mapping of disease-related genes in Japanese pear using a molecular linkage map with RAPD markers. Breed Sci 51:179–184

    Article  CAS  Google Scholar 

  • Imeh U, Khokhar S (2002) Distribution of conjugated and free phenols in fruits: antioxidant activity and cultivar variations. J Agric Food Chem 50:6301–6306

    Article  CAS  PubMed  Google Scholar 

  • Inoue E, Sakuma F, Kasumi M, Hara H, Tsukihashi T (2002) Production of apomict-like seedling through intergeneric cross between Japanese pear and apple by means of pollen irradiation. Acta Hortic 587:211–215

    Google Scholar 

  • Inoue S, Sakuma F, Kasumi M, Hara H, Tsukihashi T (2003) Effect of high temperature on suppression of the lethality exhibited in the intergeneric hybrid between Japanese pear (Pyrus pyrifolia Nakai) and apple (Malus ×domestica Borkh.). Sci Hortic 98:385–396

    Article  Google Scholar 

  • Inoue E, Sakuma F, Kasumi M, Hara H, Tsukihashi T (2004) Maternal haploidization of Japanese pear through inter-generic hybridization with apple. Acta Hortic 663:815–818

    Google Scholar 

  • Inoue E, Kasumi M, Sakuma F, Anzai H, Amano K, Hara H (2006) Identification of RAPD marker linked to fruit skin color in Japanese pear (Pyrus pyrifolia Nakai). Sci Hortic 107:254–258

    Article  CAS  Google Scholar 

  • Inoue E, Matsuki Y, Anzai H, Evans K (2007) Isolation and characterization of microsatellite markers in Japanese pear (Pyrus pyrifolia Nakai). Mol Ecol Notes 7:445–447

    Article  CAS  Google Scholar 

  • Inozemtsev VA (1972) Features of the development of fruits and seeds following distant hybridization of apple with pear. Tr Tsentr Genet Lab im I. V. Michurina 13:37–43 (in Russian)

    Google Scholar 

  • Instituto Agronomico Campinas Brazil (1987) Novos cultivares IAC. Agronomico 39:115–116

    Google Scholar 

  • International Board for Plant Genetic Resources (1989) Directory of germplasm collections 6. II Temperate fruits and tree nuts: Actinidia, Amelanchier, Carya, Catanea, Corylus, Cydonia , diospyros, Fragaria, Juglans, Malus , Mespilus, Morus, Olea, Pistacia, Punica, Prunus, Pyrus, Ribes, Rosa, Rubus, Sambucus, Vaccinium, and others. International Board for Plant Genetic Resources, Rome, Italy, 296 p

    Google Scholar 

  • International Union for the Conservation of Nature (2008) 2008 IUCN Red List of threatened species. http://www.iucnredlist.org

  • Ishii H, Watanabe H, Tanabe K (2002) Venturia nashicola: pathological specialization on pears and control trial with resistance inducers. Acta Hortic 587:293–298

    Google Scholar 

  • Ishimizu T, Shinkawa T, Sakiyama F, Norioka S (1998) Primary structural features of rosaceous S-Rnase associated with gametophytic self-incompatibility. Plant Mol Biol 37:931–941

    Article  CAS  PubMed  Google Scholar 

  • Ishimizu T, Inoue K, Shimonaka M, Saito T, Terai O, Norioka S (1999) PCR-based method for identifying the S-genotypes of Japanese pear cultivars. Theor Appl Genet 98:961–967

    Article  CAS  Google Scholar 

  • Itai A, Fujita N (2008) Identification of climacteric and non-climacteric phenotypes of Asian pear cultivars by CAPS analysis of ACC synthase genes. HortScience 43:119–121

    CAS  Google Scholar 

  • Itai A, Kawata T, Tanabe K, Tamura F, Uchiyama M, Tomomitsu M, Shiraiwa N (1999) Identification of 1-aminocyclopropane-1-carboxylic acid synthase genes controlling the ethylene level of ripening fruit in Japanese pear (Pyrus pyrifolia Nakai). Mol Gen Genet 261:42–49

    Article  CAS  PubMed  Google Scholar 

  • Itai A, Kotaki T, Tanabe K, Tamura F, Kawaguchi D, Fukuda M (2003a) Rapid identification of ACC synthase genotypes in cultivars of Japanese pear (Pyrus pyrifolia Nakai) using CAPS markers. Theor Appl Genet 106:1266–1272

    CAS  PubMed  Google Scholar 

  • Itai A, Tanabe K, Tamura F, Tomomitsu M (2003b) Cloning and characterization of a cDNA encoding 1-aminocyclopropane-1-carboxylate (ACC) synthase (PPACS3) from ripening fruit of Japanese pear (Pyrus pyrifolia Nakai). J Jpn Soc Hortic Sci 72:99–106

    Article  CAS  Google Scholar 

  • Jakovlev SP, Osto-Penko VI, Jakovlev Y (1968) The use of pollen irradiation on crossing some fruit trees. Genetika 2:62–74 (in Russian)

    Google Scholar 

  • Jakovlev SP, Kravtsov PV, Ostapenko VI (1971) Distant hybridization in the subfamily Pomoideae. Tr Tsentr Genet Lab im I. V. Michurina 12:13–23 (in Romanian)

    Google Scholar 

  • Jang JT, Tanabe K, Tamura F, Banno K (1991) Identification of Pyrus species by peroxidase isozyme phenotypes of flower buds. J Jpn Soc Hortic Sci 60:513–519

    Article  CAS  Google Scholar 

  • Jang JT, Tanabe K, Tamura F, Banno K (1992) Identification of Pyrus species by leaf peroxidase isozyme phenotypes. J Jpn Soc Hortic Sci 61:273–286

    Article  Google Scholar 

  • Janick J (2004) ‘P448-2’ (Green JadeTM) pear. HortScience 39:454–455

    Google Scholar 

  • Jensen DD, Griggs HW, Gonzales CQ, Schneider H (1964) Pear decline virus transmission by pear psylla. Phytopathology 54:1346–1351

    Google Scholar 

  • Jock S, Donat V, Lopez MM, Bazzi C, Geider K (2002) Following spread of fire blight in Western, Central and Southern Europe by molecular differentiation of Erwinia amylovorastrains with PFGE analysis. Environ Microbiol 4:106–114

    Article  PubMed  Google Scholar 

  • Kadota M, Niimi Y (2004) Production of triploid plants of Japanese pear (Pyrus pyrifolia Nakai) by anther culture. Euphytica 138:141–147

    Article  Google Scholar 

  • Kaim E, Jacob H, Krüger E (2006) Hybrids of European and Nashi pears: a new fruit for Europe? Acta Hortic 712:443–448

    Google Scholar 

  • Kajiura I (1994) Nashi (Japanese pear). In: Konishi K, Iwahori S, Kitagawa H, Yukawa T (eds) Horticulture in Japan. Asakura, Tokyo, Japan, pp 40–47

    Google Scholar 

  • Kajiura I, Sato Y (1990) Recent progress in Japanese pear (Pyrus pyrifolia Nakai) breeding, and descriptions of cultivars based on literature review. Bulletin of Fruit Trees Research Station, Extra No 1

    Google Scholar 

  • Kakui H, Tsuzuki T, Koba T, Sassa H (2007) Polymorphism of SFBB and its use for S genotyping in Japanese pear (Pyrus pyrifolia). Plant Cell Rep 26:1619–1625

    Article  CAS  PubMed  Google Scholar 

  • Kanato K, Kajiura I, McKenzie DW (1982) The ideal Japanese pear. In: van der Zwet T, Childers NF (eds) The pear. Horticultural Publications, Gainesville, FL, USA, pp 138–155

    Google Scholar 

  • Karamloo F, Scheirer S, Wangorsch A, May S, Haustein D, Vieths S (2001) Pry c 1, the major allergen from pear (Pyrus communis), is a new member of the Bet v 1 allergen family. J Chromatogr B 756:281–293

    Article  CAS  Google Scholar 

  • Karpov GK (1966) Distant hybridization in the work of the I. V. Michurin Central Genetical Laboratory. Genetika 1:165–170

    Google Scholar 

  • Katayama H, Uematsu C (2003) Comparative analysis of chloroplast DNA in Pyrus species: physical map and gene localization. Theor Appl Genet 106:303–310

    CAS  PubMed  Google Scholar 

  • Kikuchi A (1930) On the skin colour of the Japanese pear and its inheritance. Contrib Inst Plant Ind 8:1–50 (in Japanese)

    Google Scholar 

  • Kikuchi A (1946) Speciation and taxonomy of Chinese pears. Collect Rec Hortic Res Kyoto Univ 3:1–8

    Google Scholar 

  • Kim HT, Hirata Y, Lee IH, Cho KS, Kim YK, Kang SS, Kim MS, Soo DS, Koh GC, Nou IS (2004) PCR-RFLP screening of intergeneric hybrid between pear (Pyrus sp.) and apple (Malussp.). Kor J Breed Sei 36:330–337

    Google Scholar 

  • Kim HT, Hirata Y, Kim HJ, Nou IS (2006) The presence of a new S-RNase allele (S 10 ) in Asian pear [Pyrus pyrifolia (Burm; Nakai)]. Genet Resour Crop Evol 53:1375–1383

    Article  CAS  Google Scholar 

  • Kim H, Kakui H, Koba T, Hirata Y, Sassa H (2007) Cloning of a new S-RNase and development of a PCR-RFLP system for the determination of the S-genotypes of Japanese pear. Breed Sci 57:159–164

    Article  Google Scholar 

  • Kimura T, Shi YZ, Shoda M, Kotobuki K, Matsuta N, Hayashi T, Ban Y, Yamamoto T (2002) Identification of Asian pear varieties by SSR analysis. Breed Sci 52:115–121

    Article  CAS  Google Scholar 

  • Kimura T, Iketani H, Kotobuki K, Matsuta N, Ban Y, Hayashi T, Yamamoto T (2003) Genetic characterization of pear varieties revealed by chloroplast DNA sequences. J Hortic Sci Biotechnol 78:241–247

    CAS  Google Scholar 

  • Kleinschmit J, Soppa B, Wagner I, Fellenberg U, Schmidt J, Brotje H, Schute G, Meier-Dinkel A (1998) Die wildbirne – Baum des jahres 1998. Forst Holz 53:35–39

    Google Scholar 

  • Kovalev NV (1940) Immunity of fruit trees to fungus diseases. C R Acad Sci USSR 7:176–179 (in Russian)

    Google Scholar 

  • Kovalev NV (1963) Leaf blight of pears. Zasc Rast Vred Bolez 8(11):58 (In Russian)

    Google Scholar 

  • Kozaki I. (1973) Black spot disease resistance in Japanese pear. I. Heredity of the disease resistance. Bull Hortic Res Stn A12:17–27 (in Japanese)

    Google Scholar 

  • Lantz HL (1929) Pear breeding: an inheritance study of Pyrus communis × P. ussuriensis hybrid fruits. Proc Am Soc Hortic Sci 75:85–88

    Google Scholar 

  • Layne REC, Bailey CH, Hough LF (1968) Efficacy of transmission of fire blight resistance in Pyrus. Can J Plant Sci 48:231–243

    Article  Google Scholar 

  • Lear M, Hunt D (1996) Updating the threatened temperate tree list. In: Hunt D (ed) Temperate trees under threat. Proceedings of IDS symposium on the conservation status of temperate trees, University of Bonn, Germany, 30 Sept–1 Oct 1994. International Dendrological Society, Stanington, pp 161–171

    Google Scholar 

  • Lebedev VG, Dolgov SV, Lavrova N, Lunin VG, Naroditski BS (2002a) Plant-defensin genes introduction for improvement of pear phytopathogen resistance. Acta Hortic 596:167–172

    CAS  Google Scholar 

  • Lebedev VG, Dolgov SV, Skryabin KG (2002b) Transgenic pear clonal rootstocks resistant to herbicide “Basta”. Acta Hortic 596:193–198

    CAS  Google Scholar 

  • Lebedev VG, Taran SA, Shmatchenko VV, Dolgov SV (2002c) Pear transformation with the gene for supersweet protein thaumatin II. Acta Hortic 596:199–202

    CAS  Google Scholar 

  • Lee GP, Lee CH, Kim CS (2004) Molecular markers derived from RAPD, SCAR, and the conserved 18S rDNA sequences for classification and identification in Pyrus pyrifolia and P. communis . Theor Appl Genet 108:1487–1491

    Article  CAS  PubMed  Google Scholar 

  • Li LH, Feng JZ, Yan XM (1997) A study on intergeneric cross between apple and pear. Acta Agri Boreali Sin 12(suppl.):87–90

    Google Scholar 

  • Lombard PB, Westwood MN (1987) Pear rootstocks. In: Rom RC, Carlson RF (eds) Rootstocks for fruit crops. Wiley, New York, NY, pp 145–183

    Google Scholar 

  • Luby JJ, Bedford DS, Hoover EE, Munson ST, Gray WH, Wildung DK, Stushnoff C (1987) ‘Summercrisp’ pear. HortScience 22:964

    Google Scholar 

  • Ludin Y (1942) Hardiness of fruit trees in the winter of 1941-42. Fruktodlaren 6:168–171 (in Swedish)

    Google Scholar 

  • Machida Y, Kozaki I (1976) Quantitative studies on the fruit quality for Japanese pear (Pyrus serotina Rehder) breeding. II. Statistical analysis of a hybrid seedling population. J Jpn Soc Hortic Sci 44:325–329

    Google Scholar 

  • Malnoy M, Reynoird JP, Chevreau E (2000) Preliminary evaluation of new gene transfer strategies for resistance to fire blight in pear. Acta Hortic 538:635–638

    CAS  Google Scholar 

  • Malnoy M, Venisse JS, Brisset MN, Chevreau E (2003) Expression of bovine lactoferrin cDNA confers resistance to Erwinia amylovora in transgenic pear. Mol Breed 12:231–244

    Article  CAS  Google Scholar 

  • Malnoy M, Faize M, Venisse JS, Geider K, Chevreau E (2005a) Expression of viral EPS-depolymerase reduces fire blight susceptibility in transgenic pear. Plant Cell Rep 23:231–244

    Article  CAS  Google Scholar 

  • Malnoy M, Venisse JS, Chevreau E (2005b) Expression of a bacterial effector, Harpin N, causes increased resistance to fire blight in Pyrus communis. Tree Genet Genomes 1:41–49

    Article  Google Scholar 

  • Matjunin NF (1960) The question of frost resistance in fruit growing. Sadovodstvo 11:31–33 (in Russian)

    Google Scholar 

  • Merendez RA, Daley LS (1986) Characterization of Pyrus species and cultivars using gradient polyacrylamide gel electrophoresis. J Environ Hortic 4:56–60

    Google Scholar 

  • Monte-Corvo L, Cabrita L, Oliveira C, Leitao JM (2000) Assesment of genetic relationships among Pyrus species and cultivars using AFLP and RAPD markers. Genet Resour Crop Evol 47:257–265

    Article  Google Scholar 

  • Monte-Corvo L, Goulao L, Oliveira C (2001) ISSR analysis of cultivars of pear and suitability of molecular markers for clone discrimination. J Am Soc Hortic Sci 126:517–522

    CAS  Google Scholar 

  • Morgan DR, Soltis DE, Robertson KR (1994) Systematic and evolutionary implications of rbcL sequence variation in Rosaceae. Am J Bot 81:890–903

    Article  CAS  Google Scholar 

  • Moriya Y, Yamamoto K, Okada K, Iwanami H, Bessho H, Nakanishi T, Takasaki T (2007) Development of a CAPS marker system for genotyping European pear cultivars harboring 17 S alleles. Plant Cell Rep 26:345–354

    Article  CAS  PubMed  Google Scholar 

  • Morrison JW (1965) Varietal resistance to fire blight. West Can Soc Hort Annu Rep 20:37–40

    Google Scholar 

  • Mourgues F, Chevreau E, Lambert C, De Bondt A (1996) Efficient Agrobacterium-mediated transformation and recovery of transgenic plants from pear (Pyrus communis L.). Plant Cell Rep 16:245–249

    CAS  Google Scholar 

  • Musacchi S, Ancarani V, Gamberini A, giatti G, Sanavini S (2005) Progress in pear breeding at the University of Bologna. Acta Hortic 671:164–191

    Google Scholar 

  • National Center for Biotechnology Information (2009) Entrez: the life sciences search engine: http://www.ncbi.nlm.nih.gov/Entrez. Accessed 6 July 2009

  • Nikolenko MN (1962) Intergeneric apple-pear hybrids. Nauc Trud Ukrain nauc issled Inst Sadov Sci Trans Ukrain Rews Inst Hort 39:67–69

    Google Scholar 

  • Nishitani C, Shimizu T, Fujii H, Terakami S, Yamamoto T (2009) Analysis of expressed sequence tags from Japanese pear ‘Hosui.’ Acta Hortic 814:645–650

    CAS  Google Scholar 

  • Nybom N (1957) Reports of current work. Section I. Pome fruits and bush fruits. rep. Balsgard Fruit Breed. Inst. for 1956. pp 7–12

    Google Scholar 

  • Ohba H (1996) A brief overview of the woody vegetation of Japan and its conservation status. In: Hunt DR (ed) Temperate trees under threat. Proceedings of international dendrological society symposium on the conservation status of temperate trees, 30 Sept–1 Oct 1994, University of Bonn, Bonn, Germany, pp 89–107

    Google Scholar 

  • Oitto WA, van der Zwet T, Brooks HJ (1970) Rating of pear cultivars for resistance to fire blight. HortScience 5:474–476

    Google Scholar 

  • Okada K, Tonaka N, Moriya Y, Norioka N, Sawamura Y, Matsumoto T, Nakanishi T, Takasaki-Yasuda T (2008) Deletion of a 236kb region around S 4 -RNase in a stylar-part mutant S4sm-haplotype of Japanese pear. Plant Mol Biol 66:389–400

    Article  CAS  PubMed  Google Scholar 

  • Oliveira CM, Mota M, Monte-Corvo L, Goulao L, Silva DL (1999) Molecular typing of Pyrus based on RAPD markers. Sci Hortic 79:163–174

    Article  CAS  Google Scholar 

  • Pakhomova NP (1971) Microsporogenesis in the intergeneric hybrid Malus baccata Borkh. × Pyrus communis L. Tr Tsentr Genet Lab im I. M. Michurina 12:2310–221 (in Russian)

    Google Scholar 

  • Pakhomova NP (1974) Changes in the course of meiosis in a hybrid between apple and pear after treatment with gamma rays. Tr Tsentr Genet Lab im I V Michurina 15:125–132

    Google Scholar 

  • Panfilkina TI (1976) The characterisitics of embryo and endosperm formation in distant hybrids of Sorbus . Dep. 4177-76. Vsesoyuznyi Institut Sadovodstva, Michurinsk, USSR, 10 p

    Google Scholar 

  • Papikhin PV, Muratova SA, Dorokhova NV (2007) On improvement of effectiveness of remote hybridization in pome fruit crops. Sadovstvo I Vinogradarstvo 2007(6):2–3 (in Russian)

    Google Scholar 

  • Paprštein F, Kloutvor J, Holubec V (2002) Mapping of the regional cultivars of fruit woody species in the Czech Republic. In: Swiecicki W, Naganowska B, Wolko B (eds) Broad variation and precise characterization – limitation for the future. Proceedings of the XVIth EUCARPIA genetic resources section workshop, Poznan, Poland, 16–20 May 2001, pp 71–76

    Google Scholar 

  • Peteršon RM, Waples JR (1988) ‘Gourmet’ Pear. HortScience 23:633

    Google Scholar 

  • Peterson RM, Evers NP, Waples JR (1973) ‘Luscious’ – a high quality dessert pear for the north. S Dakota Agric Exp Stat Bull 618 p

    Google Scholar 

  • Pierantoni L, Cho KH, Shin IS, Chiodini R, Tartarini S, Dondini L, Kang SJ, Sansavini S (2004) Characterization and transferability of apple SSRs to two European pear F1 populations. Theor Appl Genet 109:1519–1524

    Article  CAS  PubMed  Google Scholar 

  • Pierantoni L, Dondini L, Cho KH, Shin IS, Gennari F, Chiodini R, Tartarini S, Kang SJ, Sansavini S (2007) Pear scab resistance QTLs via a European pear (Pyrus communis) linkage map. Tree Genet Genomes 3:311–317

    Article  Google Scholar 

  • Postman J (2008) World Pyrus Collection at USDA Germplasm in Corvallis, Oregon. Acta Hortic 800:527–533

    Google Scholar 

  • Postman J, Hummer K (1988) Virus tested pear germplasm available at the National Clonal Germplasm repository in Corvallis, Oregon. Fruit Var J 42:109–115

    Google Scholar 

  • Postman JD, Spotts RA, Calabro J (2005) Scab resistance in Pyrus germplasm. Acta Hortic 671:601–608

    Google Scholar 

  • Pu FS, Zing XP, Xu HY, Jia JX, Fu ZC (1963) The genetic analysis of commercial characteristics of Chinese varieties. Annual scientific report, Research Institute of Pomology CAAS, pp 1–15

    Google Scholar 

  • Quamme HA (1981) Heritability and effectiveness of selection for fire blight resistance in young pear seedlings inoculated in the greenhouse. In: INRA (ed) Proceedings of Eucarpia fruit section symposium – tree fruit breeding, Angers, 3–7 Sept 1979, pp 73–77

    Google Scholar 

  • Quamme HA (1984) Observations of psylla resistance among several pear cultivars and species. Fruit Var J 38:34–36

    Google Scholar 

  • Quamme HA, Kappel F, Hall JW (1990) Efficacy of early selection for fire blight resistance and the analysis of combining ability for fire blight resistance in several pear progenies. Can J Plant Sci 70:905–913

    Article  Google Scholar 

  • Quarta R, Puggioni D (1985) Survey on the variety susceptibility to pear psylla. Acta Hortic 159:77–86

    Google Scholar 

  • Rasseira MCB, Nakasu BH, Santos AM, Fortes JF, Martins OM,Raseira A, Bernardi J (1992) The CNPFT/EMBRAPA fruit breeding program in Brazil. HortScience 27:1154–1157

    Google Scholar 

  • Reed BM, Chang Y (1997) Medium- and long-term storage of in vitro cultures of temperate fruit and nut crops. In: Razdan MK, Cocking EC (eds) Conservation of plant genetic resources in vitro, vol 1, Science. Enfield, NH, USA, pp 67–105

    Google Scholar 

  • Reynoird JP, Mourgues F, Norelli J, Aldwinckle HS, Brisset MN, Chevreau E (1999) First evidence for improved resistance to fire blight in transgenic pear expressing the attacin E gene from Hyalophora cecropia. Plant Sci 149:13–22

    Article  Google Scholar 

  • Roberts EH (1975) Problems of long term storage of seed and pollen for genetic resources conservation. In: Frankel OH, Hawkes JG (eds) Crop genetic resources for today and tomorrow. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Rogers WS (1955) Pomology. In: Annual Report of the East Malling Research Station, 1 Oct–30 Sept 1954, pp 20–27

    Google Scholar 

  • Ronald WG, Temmerson HJ (1982) Tree fruits for the prairie provinces. Agricultural Canada Publication 1672E, 37 p

    Google Scholar 

  • Rubzov GA (1944) Geographical and distribution of the genus Pyrus and trends and factors in its evolution. Am Nat 78:358–366

    Article  Google Scholar 

  • Rudenko IS (1974) Cytogenetic principles of intergeneric hybridization in fruit crops. Bul Akad Stinnce RSS Mold, Ser Biol I Khim N 3:43–46

    Google Scholar 

  • Rudenko IS (1985) Hybrid between pear and quince (×Pyronia). Sadovodstvo Vinogradarstvo I Vinodelie Moldavii 10:55–57

    Google Scholar 

  • Rudneko IS (1978) Distant hybridization and polyploidy in fruit crops. Stiinca, Kishinev, Moldavian SSR, 195 p

    Google Scholar 

  • Rumayor FIA, Martinez CA, Vazquez R (2005) Breeding pears for warm climates in Mexico. Acta Hortic 671:229–231

    Google Scholar 

  • Salvianti F, Bettini PP, Giordani E, Sacchetti P, Bellini E, Buiatti M (2008) Identification by suppression subtractive hybridization of genes expressed in pear (Pyrus spp.) upon infestation with Cacopsylla pyri (Homoptera:Psyllidae). J Plant Physiol 165:1808–1816

    Article  CAS  PubMed  Google Scholar 

  • Sandhu AS, Raghbir S, Dhillon WS, Sharma KK, Mann SS (2005) Punjab nectar – a new semi-soft variety of pear. J Res Punjab Agric Univ 42:127

    Google Scholar 

  • Sansavini S (1967) Studies on cold resistance in pear varieties. Riv Ortoflorofruttic Ital 51:407–416 (in Italian)

    Google Scholar 

  • Sansavini S, Musacchi S, Ferrazzano GL, Ancarani V (2002) Hybridization of European and Nashi pears: selecting for novel taste traits. Acta Hortic 596:255–259

    Google Scholar 

  • Sanzol J, Herrero M (2002) Identification of self-incompatibility alleles in pear cultivars (Pyrus communis L.). Euphytica 128:325–331

    Article  CAS  Google Scholar 

  • Sassa H, Hirano H, Nishio T, Koba T (1997) Style-specific self-compatible mutation caused by deletion of the S-RNase gene in Japanese pear (Pyrus serotina). Plant J 12:223–227

    Article  CAS  Google Scholar 

  • Sassa H, Kakui H, Miyamoto M, Suzuki Y, Hanada K, Ushijima M, Kusaba H, Hirano H, Koba T (2007) S locus F-box brothers: multiple and pollen-specific F-box genes with haplotype-specific polymorphisms in apple and Japanese pear. Genetics 175:1869–1881

    Article  CAS  PubMed  Google Scholar 

  • Sax K (1931) The origin and relationships of the Pomoideae. J Arnold Arbor 12:3–22

    Google Scholar 

  • Sax HJ, Sax K (1947) The cytogenetics of generic hybrids of Sorbus . J Arnold Arbor 28:137–140

    Google Scholar 

  • Sestras A, Sestras R, Barbos A, Militaru M (2008) The differences among pear genotypes to fire blight (Erwinia amylovora ) attack, based on observations of natural infection. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 36:98–103

    Google Scholar 

  • Shabi E, Rotem J, Loebenstein G (1973) Physiological races of Venturia pirina on pear. Phytopathology 63:41–43

    Article  Google Scholar 

  • Shcherbenev GY (1973) The influence of boric acid and gibberellin on pollen germination in distant crosses. Sbornik Nauchnykh rabot, vsesoyuznyi Nauchno Issledovatel’ skii Institut Sadovodstva imeni I. V. Michurina 17:134–142 (in Russian)

    Google Scholar 

  • Shcherbenev GY (1975) The results of applying physiologically active compunds in hybridization of Sorbus with pear. I. Effect of physiologically active compounds on the formation of fruits and seeds. Sb nauch Rabot VNII Sadovodstva 20:108–118

    Google Scholar 

  • Sherman WB, Andrews CP, Lyrene PM, Sharpe RH (1982) ‘Flordahome’ pear. HortScience 17:270

    Google Scholar 

  • Shi YZ, Yamamoto T, Hayashi T (2002) Characterization of copia-like retrotransposons in pear. J Jpn Soc Hortic Sci 71:723–729

    Article  CAS  Google Scholar 

  • Shimura I, Seike K, Shishikura T (1980) Intergeneric hybridization between Japanese pear (Pyrus serotina Rehd.) and apple (Malus pumila Mill.). Jpn J Breed 30:170–180 (in Japanese)

    Google Scholar 

  • Shimura I, Ito Y, Seiki K (1983) An intergeneric hybrid between Pyrus serotina and Cydonia oblonga Mill. J Jpn Soc Hortic Sci 52(3):243–249

    Article  Google Scholar 

  • Shin YU, Kim WC, Moon JY (1989) Studies of the intergeneric hybridization between apple and pear. Res Rep Rural Dev Admin Hortic 21:9–14

    Google Scholar 

  • Simard M-H, Michelesi JC, Masseron A (2004) Pear rootstock breeding in France. Acta Hortic 658:535–540

    Google Scholar 

  • Sindelář J (2002) Toward a threatened forest tree species preservation on the example of crab apple (Malus sylvestris L.) and wild pear (Pyrus pyraster L. [Burgsdorf]). Zpravy Lesnickeho Vyzkumu 47:199–203 (in Czech)

    Google Scholar 

  • Sokolova EP (1970) Problems of interspecific crossing in some crops. Nauka proiz vu 1970:107–113 (in Russian)

    Google Scholar 

  • Stushnoff C, Garley B (1982) Breeding for cold hardiness. In: van der Zwet T, Childers NF (eds) The pear. Horticultural, Gainesville, FL, pp 189–199

    Google Scholar 

  • Sun L, Leng P (2008) Apple-pear hybrid and in vitro rescue culture of zygotic embryo. J China Agric Univ 13:25–29

    CAS  Google Scholar 

  • Sun J, Chu Y-F, Wu X, Liu RH (2002) Antioxidant and antiproliferative activities of common fruits. J Agric Food Chem 50:7449–7454

    Article  CAS  PubMed  Google Scholar 

  • Takasaki T, Okada K, Castillo C, Moriya Y, Saito T, Sawamura Y, Norioka N, Norioka S, Nakanishi T (2004) Sequence of the S9-Rnase cDNA and PCR-RFLP for discriminating S1- to S9-allele in Japanese pear. Euphytica 135:157–167

    Article  CAS  Google Scholar 

  • Takasaki T, Moriya Y, Okada K, Yamamoto K, Iwanami H, Bessho H, Nakanishi T (2006) cDNA cloning of nine S alleles and establishment of a PCR-RFLP system for genotyping European pear cultivars. Theor Appl Genet 112:1543–1552

    Article  CAS  PubMed  Google Scholar 

  • Tang SH, Sun M, Lia ZH, Zhou QG, Li DG (2007) Production of transgenic Xueqing pear plants with a synthetic cryl Ac gene mediated by Agrobacterium tumefaciens. Acta Hortic Sin 34:56–62

    Google Scholar 

  • Teng Y, Tanabe K, Tamura F, Itai A (2001) Genetic relationships of pear cultivars in Xinjiang, China, as measured by RAPD markers. J Hortic Sci Biotechnol 76:771–779

    CAS  Google Scholar 

  • Teng Y, Tanabe K, Tamura F, Itai A (2002) Genetic relationships of Pyrus species and cultivars native to east Asia revealed by randomly amplified polymorphic DNA markers. J Am Soc Hortic Sci 127:262–270

    CAS  Google Scholar 

  • Terakami S, Shoda M, Adachi H, Gonai T, Kasumi M, Sawamura Y, Iketani H, Kotobuki K, Patocchi A, Gessler C, Hayashi T, Yamamoto T (2006) Genetic mapping of the pear scab resistance gene Vnk of Japanese pear cultivar Kinchaku. Theor Appl Genet 113:743–752

    Article  CAS  PubMed  Google Scholar 

  • Terakami S, Adachi Y, Iketani H, Sato Y, Sawamura Y, Takada N, Nishitani C, Yamamoto T (2007) Genetic mapping of genes for susceptibility to black spot disease in Japanese pears. Genome 50:735–741

    Article  CAS  PubMed  Google Scholar 

  • Teramoto S, Kano-Murakami Y, Hori M, Kamiyama K (1994) ‘DNA finger-printing’ to distinguish cultivar and parental relation of Japanese pear. J Jpn Soc Hortic Sci 63:17–21

    Article  CAS  Google Scholar 

  • Teranishi H, Kasuya M, Yoshida M, Ikarashi T (1988) Pollen allergy due to artificial pollination of Japanese pear an occupational hazard. J Soc Occup Med 38:18–22

    Article  CAS  PubMed  Google Scholar 

  • Thibault B, Lecomte P, Hermann L, Belouin A (1987) Assessment of the susceptibility to Erwinia amylovoraof 90 varieties or selections of pear. Acta Hortic 217:305–309

    Google Scholar 

  • Thompson SS, Janick J, Williams EB (1962) Evaluation of resistance to fire blight of pear. Proc Am Soc Hortic Sci 80:105–113

    Google Scholar 

  • Thompson JM, van der Zwet T, Oitto WA (1974) Inheritance of grit content in fruits of Pyrus communis L. J Am Soc Hortic Sci 99:141–143

    Google Scholar 

  • Thompson JM, Zimmerman RH, van der Zwet T (1975) Inheritance of fire blight resistance in pear. I. A dominant gene, Se, causing sensitivity. J Hered 66:259–264

    Google Scholar 

  • Tukey HB, Braese KD (1934) Trials with pear stocks in New York. Proc Am Soc Hortic Sci 30:361–364

    Google Scholar 

  • United States Department of Agriculture, Agricultural Research Service (2009a) Pear genetic resources. http://www.ars.usda.gov/Main/docs.htm?docid=11372. Accessed 12 June 2009

  • United States Department of Agriculture, Agricultural Research Service (2009b) Germplasm resources information network (GRIN), GRIN taxonomy for plants. http://www.ars-grin.gov/cgi-bin/npgs/html/tax_search.pl. Accessed 12 July 2009

  • University of Reading (2009) Welcome to the national fruit collection. http://www.nationalfruitcollection.org.uk . Accessed 12 June 2009

  • Ushijima K, Sassa H, Tao R, Yamane H, Dandekar AM, Gradziel TM, Hirano H (1998) Cloning and characterization of cDNAs encoding S-RNases from almond (Prunus dulcis): primary structural features and sequence diversity of the S-RNases in Rosaceae. Mol Gen Genet 260:261–268

    Article  CAS  PubMed  Google Scholar 

  • Ushijima K, Sassa H, Dandekar AM, Gradziel TM, Tao R, Hirano H (2003) Structural and transcriptional analysis of the self-incompatibility locus of almond (Prunus dulcis) F-box gene with haplotype-specific polymorphism. Plant Cell 15:771–781

    Article  CAS  PubMed  Google Scholar 

  • van der Zwet T, Beer SV (1999) Fire blight – its nature, prevention, and control: a practical guide to integrated disease management. USDA, ARS, Agriculture Information Bulletin No 631, 97 p

    Google Scholar 

  • van der Zwet T, Bell RL (1990) Fire blight susceptibility in Pyrus germplasm from Eastern Europe. HortScience 25:566–568

    Google Scholar 

  • van der Zwet T, Keil HL (1979) Fire blight: a bacterial disease of rosaceous plants. USDA Agricultural Handbook 510, Washington DC, USA, 200 p

    Google Scholar 

  • van der Zwet T, Oitto WA (1972) Further evaluation of the reaction of “resistant” pear cultivars to fire blight. HortScience 7:395–397

    Google Scholar 

  • van der Zwet T, Oitto WA, Blake RC (1974) Fire blight resistance in pear cultivars. HortScience 9:340–342

    Google Scholar 

  • Vavilov NI (1951) The origin, variation, immunity and breeding of cultivated plants. Ronald, New York, NY

    Google Scholar 

  • Vincent MA (2005) On the spread and current distribution of Pyrus calleryana in the United States. Castanea 70:20–31

    Article  Google Scholar 

  • Vondracek J (1982) Pear cultivars resistant to scab. In: van der Zwet T, Childers NF (eds) The pear. Horticulture, Gainesville, FL, pp 420–424

    Google Scholar 

  • Wagner I (1999) Conservation and yield of wild fruit trees – problems regarding direct uses of relics of wild fruit trees. Forstarchiv 70:23–27

    Google Scholar 

  • Wang YL (1990) Pear breeding in China. Plant Breed Abstr 60:877–879

    Google Scholar 

  • Wang YL, Wei WD (1987) Studies on the inheritance of commercial characteristics in pear crossed seedlings. J Decid Fruits 2:1–4 (in Chinese)

    Google Scholar 

  • Wellington R (1913) The inheritance of the russet skin in the pear. Science 37:156

    Article  CAS  PubMed  Google Scholar 

  • Wen XP, Xm P, Matsuda N, Kita M, Inoue H, Hao YJ, Honda C, Moriguchi T (2008) Over-expression of the apple spermine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers. Transgen Res 17:251–263

    Article  CAS  Google Scholar 

  • Westigard PH, Westwood MN, Lombard PB (1970) Host preference and resistance of Pyrus species to the pear psylla, Psylla pyricola Föerster. J Am Soc Hortic Sci 95:34–36

    Google Scholar 

  • Westwood MN (1976) Inheritance of pear decline resistance. Fruit Var J 30:63–64

    Google Scholar 

  • Westwood MN (1982) Pear germplasm of the new national clonal repository: it's evaluation and uses. Acta Hortic 124:57–65

    Google Scholar 

  • Westwood MN, Bjornstad HO (1971) Some fruit charactersistics of interspecific hybrids and extent of self-sterility in Pyrus. Bull Torrey Bot Club 98:22–24

    Article  Google Scholar 

  • White AG, Brewer LR (2006) The New Zealand pear breeding project. Acta Hortic 596:239–242

    Google Scholar 

  • White AG, Selby HI (1994) Segregation for fruit characteristics in some crosses of European and Asian pears. In: Schmidt H, Kellerhals M (eds) Progress in temperate fruit breeding. Proceedings of EUCARPIA fruit breeding section meeting, Wadenswil/Einsiedeln, Switzerland, 30 Aug–3 Sept 1993. Kluwer, Dordrecht, Netherlands, pp 235–238

    Google Scholar 

  • White AG, Alspach PA, Weskett RH, Brewer LR (2000a) Heritability of fruit shape in pears. Euphytica 112:1–7

    Article  Google Scholar 

  • White AG, Brewer LR, Alspach (2000b) Heritability of fruit characteristics in pears. Acta Hortic 538:331–337

    Google Scholar 

  • Wisker AL (1916) Blight-resistant roots – the first step towards pear blight control. Mon Bull Calif Commun Hortic 5(2):48–53

    Google Scholar 

  • World Wildlife Fund (2001) Kopet Dag woodlands and forest steppe (PA1008): http://www.worldwildlife.org/wildworld/profiles/terrestrial/pa/pa1008_full.html. Accessed 12 July 2009

  • Wunsch A, Hormaza JI (2007) Charcterization of variability and genetic similarity of European pear using microsatellite loci developed in apple. Sci Hortic 113:37–43

    Article  CAS  Google Scholar 

  • Xu H, Zhou F, Jiang Z, Ma H (1988) Pyrus pyrifolia germplasm resources in China. Zuowu Pinzhong Ziyuan 4:1–3

    Google Scholar 

  • Yamamoto T, Kimura T, Sawamura Y, Kotobuki K, Ban Y, Hayashi T, Matsuta N (2001) SSRs isolated from apple can identify polymorphism and genetic diversity in pear. Theor Appl Genet 102:865–870

    Article  CAS  Google Scholar 

  • Yamamoto T, Kimura T, Swamura Y, Manabe T, Kotobuki K, Hayashi T, Ban Y, Matsuta N (2002a) Simple sequence repeats for genetic analysis in pear. Euphytica 124:129–137

    Article  CAS  Google Scholar 

  • Yamamoto T, Kimura T, Shoda M, Imai T, Sawamura Y, Kotobuki K, Hayashi T, Matsuta N (2002b) Genetic linkage maps constructed by using an interspecific cross between Japanse and European pears. Theor Appl Genet 106:9–18

    CAS  PubMed  Google Scholar 

  • Yamamoto T, Kimura T, Saito T, Kotobuki K, Matsuta N, Liebhard R, Gessler C, van de Weg WE, Hayashi T (2004) Genetic maps of Japanese and European pears aligned to the apple consensus map. Acta Hortic 663:51–56

    CAS  Google Scholar 

  • Yamamoto T, Kimura T, Terakami S, Nishitani C, Sawamura Y, Saito T, Kotobuki K, Hayashi T (2007) Integrated reference genetic maps of pear based on SSR and AFLP markers. Breed Sci 57:321–329

    Article  CAS  Google Scholar 

  • Zalaski K, Wierszyllowski J, Rebandel Z (1959) Observations and experiments on leaf blight of pear (Fabraea maculata Atk., Entomosporium maculatum Lev.) and its biology and control in seedlings during nursery production (from 1948 to 1954). Prace Kom Nauk Roln Lesn, Poznan 5(1):46 (in Polish)

    Google Scholar 

  • Zavoronkov PA (1960) Breeding winter-hardy pear varieties. Sadovodstvo 11:28–31 (in Russian)

    Google Scholar 

  • Zhang MJ (2002) The advancement of pear breeding in recent twenty years in China. Acta Hortic 587:157–166

    Google Scholar 

  • Zhang XR, Zhang JL, Zhang SM (1991) Selection of a new apple cultivar Ganjin from hybridization of apple and pear. J Fruit Sci 8:65–70

    CAS  Google Scholar 

  • Zheng X, Cai D, Yao L, Teng Y (2008) Non-concerted ITS evolution, early origin and phylogenetic utility of ITS pseudogenes in Pyrus. Mol Phylogenet Evol 48:892–903

    Article  CAS  PubMed  Google Scholar 

  • Zhu LH, Ahlman A, Welander M (2003) The rooting ability of the dwarfing rootstock BP10030 (Pyrus communis) was significantly increased by introduction of the rolB gene. Plant Sci 135:829–835

    Article  CAS  Google Scholar 

  • Zielinski QB, Thompson MM (1967) Speciation in Pyrus; chromosome number and meiotic behavior. Bot Gaz 128:109–112

    Article  Google Scholar 

  • Zielinski QB, Reimer FC, Quackenbush VL (1965) Breeding behavior of fruit characteristics in pears, Pyrus communis L. Proc Am Soc Hortic Sci 86:81–87

    Google Scholar 

  • Zisovich AH, Stern RA, Shafir S, Goldway M (2004) Identification of seven S-alleles from the European pear (Pyrus communis) and the determination of compatibility among cultivars. J Hortic Sci Biotechnol 79:101–106

    CAS  Google Scholar 

  • Zuccherelli S, Tassinari P, Broothaerts W, Tartarini S, Dondini L, Sansavini S (2002) S-allele characterization in self-incompatible pear (Pyrus communis L.). Sex Plant Reprod 15:153–158

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard L. Bell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bell, R.L., Itai, A. (2011). Pyrus. In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16057-8_8

Download citation

Publish with us

Policies and ethics