Skip to main content

Safe Flocking in Spite of Actuator Faults

  • Conference paper
  • First Online:
Stabilization, Safety, and Security of Distributed Systems (SSS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6366))

Included in the following conference series:

Abstract

The safe flocking problem requires a collection of N mobile agents to (a) converge to and maintain an equi-spaced lattice formation, (b) arrive at a destination, and (c) always maintain a minimum safe separation. Safe flocking in Euclidean spaces is a well-studied and difficult coordination problem. Motivated by real-world deployment of multi-agent systems, this paper studies one-dimensional safe flocking, where agents are afflicted by actuator faults. An actuator fault is a new type of failure that causes an affected agent to be stuck moving with an arbitrary velocity. In this setting, first, a self-stabilizing solution for the problem is presented. This relies on a failure detector for actuator faults. Next, it is shown that certain actuator faults cannot be detected, while others may require O(N) time for detection. Finally, a simple failure detector that achieves the latter bound is presented. Several simulation results are presented for illustrating the effects of failures on the progress towards flocking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arora, A., Gouda, M.: Closure and convergence: A foundation of fault-tolerant computing. IEEE Trans. Softw. Eng. 19, 1015–1027 (1993)

    Article  Google Scholar 

  2. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed systems. J. ACM 43(2), 225–267 (1996)

    Article  MathSciNet  Google Scholar 

  3. Chandy, K.M., Lamport, L.: Distributed snapshots: determining global states of distributed systems. ACM Trans. Comput. Syst. 3(1), 63–75 (1985)

    Article  Google Scholar 

  4. Dolev, S.: Self-stabilization. MIT Press, Cambridge (2000)

    Book  Google Scholar 

  5. Fax, J., Murray, R.: Information flow and cooperative control of vehicle formations. IEEE Trans. Autom. Control 49(9), 1465–1476 (2004)

    Article  MathSciNet  Google Scholar 

  6. Franceschelli, M., Egerstedt, M., Giua, A.: Motion probes for fault detection and recovery in networked control systems. In: American Control Conference 2008, pp. 4358–4363 (2008)

    Google Scholar 

  7. Gazi, V., Passino, K.M.: Stability of a one-dimensional discrete-time asynchronous swarm. IEEE Trans. Syst., Man, Cybern. B 35(4), 834–841 (2005)

    Article  Google Scholar 

  8. Jadbabaie, A., Lin, J., Morse, A.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001 (2003)

    Article  MathSciNet  Google Scholar 

  9. Johnson, T.: Fault-Tolerant Distributed Cyber-Physical Systems: Two Case Studies. Master’s thesis, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (May 2010)

    Google Scholar 

  10. Johnson, T., Mitra, S.: Safe and stabilizing distributed flocking in spite of actuator faults. Tech. Rep. UILU-ENG-10-2204 (CRHC-10-02), University of Illinois at Urbana-Champaign, Urbana, IL (May 2010)

    Google Scholar 

  11. Okubo, A.: Dynamical aspects of animal grouping: Swarms, schools, flocks, and herds. Adv. Biophys. 22, 1–94 (1986)

    Article  Google Scholar 

  12. Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans. Autom. Control 51(3), 401–420 (2006)

    Article  MathSciNet  Google Scholar 

  13. Shaw, E.: Fish in schools. Natural History 84(8), 40–45 (1975)

    Google Scholar 

  14. Tsitsiklis, J., Bertsekas, D., Athans, M.: Distributed asynchronous deterministic and stochastic gradient optimization algorithms. IEEE Trans. Autom. Control 31(9), 803–812 (1986)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Johnson, T., Mitra, S. (2010). Safe Flocking in Spite of Actuator Faults. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2010. Lecture Notes in Computer Science, vol 6366. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16023-3_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16023-3_45

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16022-6

  • Online ISBN: 978-3-642-16023-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics