Skip to main content

Chameleon-MAC: Adaptive and Self-⋆ Algorithms for Media Access Control in Mobile Ad Hoc Networks

  • Conference paper
  • First Online:
Book cover Stabilization, Safety, and Security of Distributed Systems (SSS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6366))

Included in the following conference series:

Abstract

In mobile ad hoc networks (MANETs) mobile nodes do not have access to a fixed network infrastructure and they set up a communication network by themselves. MANETs require implementation of a wireless Medium Access Control (MAC) layer. Existing MAC algorithms that consider no mobility, solve the problem of eventually guaranteeing every node with a share of the communications bandwidth. In the context of MANETs, we ask: Is there an efficient MAC algorithm when mobility is considered?

MANETs are subject to transient faults, from which self-stabilizing systems can recover. The self-stabilization design criteria, and related concepts of self-⋆, liberate the application designer from dealing with low-level complications, and provide an important level of abstraction. Whereas stabilization criteria are important for the development of autonomous systems, adaptation is imperative for coping with a variable environment. Adapting to a variable environment requires dealing with a wide range of practical issues, such as relocation of mobile nodes and changes to the motion patterns.

This work proposes the design and proof of concept implementation of an adapted MAC algorithm named Chameleon-MAC, which is based on a self-stabilizing algorithm by Leone et al., and uses self-⋆ methods in order to further adapt its behavior according to the mobility characteristics of the environment. Moreover, we give an extensive treatment of the aspects and parameters that can bring the algorithm into the practical realm and we demonstrate documented behavior on real network studies (MICAz 2.4 GHz motes) as well as using simulation (TOSSIM [32]), showing improved overhead and fault-recovery periods than existing algorithms.

We expect that these advantages, besides the contribution in the algorithmic front of research, can enable quicker adoption by practitioners and faster deployment.

An extended version appears in [31] as a technical report. This work is partially supported by the ICT Programme of the European Union under contract number ICT-2008-215270 (FRONT’S).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramson, N.: Development of the ALOHANET. IEEE Transactions on Information Theory 31(2), 119–123 (1985)

    Article  Google Scholar 

  2. Arumugam, M., Kulkarni, S.: Self-stabilizing deterministic time division multiple access for sensor networks. AIAA Journal of Aerospace Computing, Information, and Communication (JACIC) 3, 403–419 (2006)

    Article  Google Scholar 

  3. Arumugam, M., Kulkarni, S.S.: Self-stabilizing deterministic TDMA for sensor networks. In: Chakraborty, G. (ed.) ICDCIT 2005. LNCS, vol. 3816, pp. 69–81. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Berns, A., Ghosh, S.: Dissecting self-* properties. In: SASO, pp. 10–19. IEEE Computer Society, Los Alamitos (2009)

    Google Scholar 

  5. Bettstetter, C.: Smooth is better than sharp: a random mobility model for simulation of wireless networks. In: Meo, M., Dahlberg, T.A., Donatiello, L. (eds.) MSWiM, pp. 19–27. ACM, New York (2001)

    Google Scholar 

  6. Bilstrup, K., Uhlemann, E., Ström, E.G., Bilstrup, U.: Evaluation of the IEEE 802.11p MAC method for vehicle-to-vehicle communication. In: VTC Fall, pp. 1–5. IEEE, Los Alamitos (2008)

    Google Scholar 

  7. Bilstrup, K., Uhlemann, E., Ström, E.G., Bilstrup, U.: On the ability of the 802.11p MAC method and STDMA to support real-time vehicle-to-vehicle communication. EURASIP Journal on Wireless Communications and Networking 2009, 1–13 (2009)

    Google Scholar 

  8. Camp, T., Boleng, J., Davies, V.: A survey of mobility models for ad hoc network research. Wireless Communications and Mobile Computing 2(5), 483–502 (2002)

    Article  Google Scholar 

  9. Chipcon Products from Texas Instruments, Texas Instruments, Post Office Box 655303, Dallas, Texas 75265. 2.4GHz IEEE 802.15.4 / ZigBee-ready RF Transceiver (2008)

    Google Scholar 

  10. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. ACM Commun. 17(11), 643–644 (1974)

    Article  Google Scholar 

  11. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)

    Book  Google Scholar 

  12. Dolev, S. (ed.): ALGOSENSORS 2009. LNCS, vol. 5804. Springer, Heidelberg (2009)

    MATH  Google Scholar 

  13. Dolev, S., Gilbert, S., Lynch, N.A., Schiller, E., Shvartsman, A.A., Welch, J.L.: Brief announcement: virtual mobile nodes for mobile ad hoc networks. In: Chaudhuri, S., Kutten, S. (eds.) PODC, p. 385. ACM, New York (2004)

    Google Scholar 

  14. Dolev, S., Gilbert, S., Lynch, N.A., Schiller, E., Shvartsman, A.A., Welch, J.L.: Virtual mobile nodes for mobile ad hoc networks. In: Guerraoui, R. (ed.) DISC 2004. LNCS, vol. 3274, pp. 230–244. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Dolev, S., Gilbert, S., Schiller, E., Shvartsman, A.A., Welch, J.L.: Autonomous virtual mobile nodes. In: DIALM-POMC, pp. 62–69 (2005)

    Google Scholar 

  16. Dolev, S., Schiller, E.: Communication adaptive self-stabilizing group membership service. IEEE Trans. Parallel Distrib. Syst. 14(7), 709–720 (2003)

    Article  Google Scholar 

  17. Dolev, S., Schiller, E., Welch, J.L.: Random walk for self-stabilizing group communication in ad hoc networks. IEEE Trans. Mob. Comput. 5(7), 893–905 (2006)

    Article  Google Scholar 

  18. Goussevskaia, O., Wattenhofer, R., Halldórsson, M.M., Welzl, E.: Capacity of arbitrary wireless networks. In: INFOCOM, pp. 1872–1880. IEEE, Los Alamitos (2009)

    Google Scholar 

  19. Haenggi, M.: Outage, local throughput, and capacity of random wireless networks. Trans. Wireless. Comm. 8(8), 4350–4359 (2009)

    Article  Google Scholar 

  20. Halldórsson, M.M., Wattenhofer, R.: Wireless communication is in APX. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 525–536. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  21. Herman, T., Tixeuil, S.: A distributed TDMA slot assignment algorithm for wireless sensor networks. In: Nikoletseas, S.E., Rolim, J.D.P. (eds.) ALGOSENSORS 2004. LNCS, vol. 3121, pp. 45–58. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  22. Holfelder, W., Johnson, D.B., Hartenstein, H., Bahl, V. (eds.): Proceedings of the Third International Workshop on Vehicular Ad Hoc Networks, VANET 2006. ACM, New York (2006)

    Google Scholar 

  23. Jhumka, A., Kulkarni, S.S.: On the design of mobility-tolerant TDMA-based media access control (MAC) protocol for mobile sensor networks. In: Janowski, T., Mohanty, H. (eds.) ICDCIT 2007. LNCS, vol. 4882, pp. 42–53. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  24. Kuhn, F., Lynch, N.A., Newport, C.C.: The abstract MAC layer. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp. 48–62. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  25. Kulkarni, S.S., Arumugam, M.U.: Sensor Network Operations, chapter SS-TDMA: A self-stabilizing MAC for sensor networks. IEEE Press, Los Alamitos (2006)

    Google Scholar 

  26. Lagemann, A., Nolte, J., Weyer, C., Turau, V.: Mission statement: Applying self-stabilization to wireless sensor networks. In: Proceedings of the 8th GI/ITG KuVS Fachgespräch “Drahtlose Sensornetze” (FGSN 2009), pp. 47–49 (2009)

    Google Scholar 

  27. Lee, H., Cerpa, A., Levis, P.: Improving wireless simulation through noise modeling. In: Abdelzaher, T.F., Guibas, L.J., Welsh, M. (eds.) IPSN, pp. 21–30. ACM, New York (2007)

    Chapter  Google Scholar 

  28. Lenzen, C., Locher, T., Sommer, P., Wattenhofer, R.: Clock Synchronization: Open Problems in Theory and Practice. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds.) SOFSEM 2010. LNCS, vol. 5901, pp. 61–70. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  29. Lenzen, C., Suomela, J., Wattenhofer, R.: Local algorithms: Self-stabilization on speed. In: Guerraoui, R., Petit, F. (eds.) SSS 2009. LNCS, vol. 5873, pp. 17–34. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  30. Leone, P., Papatriantafilou, M., Schiller, E.M.: Relocation analysis of stabilizing MAC algorithms for large-scale mobile ad hoc networks. In: Dolev [12], pp. 203–217

    Google Scholar 

  31. Leone, P., Papatriantafilou, M., Schiller, E.M., Zhu, G.: Chameleon-MAC: Adaptive and stabilizing algorithms for media access control in mobile ad-hoc networks. Technical Report 2010:02, Chalmers University of Technology (2010), ISSN 1652-926X

    Google Scholar 

  32. Levis, P., Lee, N., Welsh, M., Culler, D.E.: TOSSIM: accurate and scalable simulation of entire tinyos applications. In: Akyildiz, I.F., Estrin, D., Culler, D.E., Srivastava, M.B. (eds.) SenSys, pp. 126–137. ACM, New York (2003)

    Google Scholar 

  33. Luby, M.: Removing randomness in parallel computation without a processor penalty. J. Comput. Syst. Sci. 47(2), 250–286 (1993)

    Article  MathSciNet  Google Scholar 

  34. Metzner, J.J.: On Improving Utilization in ALOHA Networks. IEEE Transactions on Communications 24(4), 447–448 (1976)

    Article  Google Scholar 

  35. Patel, A., Degesys, J., Nagpal, R.: Desynchronization: The theory of self-organizing algorithms for round-robin scheduling. In: SASO, pp. 87–96. IEEE Computer Society, Los Alamitos (2007)

    Google Scholar 

  36. Polastre, J., Szewczyk, R., Culler, D.E.: Telos: enabling ultra-low power wireless research. In: IPSN, pp. 364–369. IEEE, Los Alamitos (2005)

    Google Scholar 

  37. Schneider, J., Wattenhofer, R.: Coloring unstructured wireless multi-hop networks. In: Tirthapura, S., Alvisi, L. (eds.) PODC, pp. 210–219. ACM, New York (2009)

    Google Scholar 

  38. Specifications ASTM, E2213-03. Standard Specification for Telecommunications and Information Exchange between Roadside and Vehicle Systems - 5 GHz Band Dedicated Short Range Communications Medium Access Control and Physical Layer (September 2003)

    Google Scholar 

  39. Stuedi, P., Alonso, G.: Wireless ad hoc VoIP. In: Workshop on Middleware for Next-generation Converged Networks and Applications, Newport Beach, California, USA (November 2007)

    Google Scholar 

  40. Takagi, H., Kleinrock, L.: Throughput analysis for persistent CSMA systems. IEEE Transactions on Communications 33(7), 627–638 (1985)

    Article  Google Scholar 

  41. Žerovnik, J.: On the convergence of a randomized algorithm frequency assignment problem. Central European Journal for Operations Research and Economics (CEJORE) 6(1-2), 135–151 (1998)

    MATH  Google Scholar 

  42. Viqar, S., Welch, J.L.: Deterministic collision free communication despite continuous motion. In: Dolev [12], pp. 218–229

    Google Scholar 

  43. Wattenhofer, R.: Theory Meets Practice, It’s about Time. In: 36th International Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM), Czech Republic (2010)

    Google Scholar 

  44. Wegener, A., Schiller, E.M., Hellbrück, H., Fekete, S.P., Fischer, S.: Hovering data clouds: A decentralized and self-organizing information system. In: de Meer, H., Sterbenz, J.P.G. (eds.) IWSOS 2006. LNCS, vol. 4124, pp. 243–247. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leone, P., Papatriantafilou, M., Schiller, E.M., Zhu, G. (2010). Chameleon-MAC: Adaptive and Self-⋆ Algorithms for Media Access Control in Mobile Ad Hoc Networks. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2010. Lecture Notes in Computer Science, vol 6366. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16023-3_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16023-3_37

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16022-6

  • Online ISBN: 978-3-642-16023-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics