Skip to main content

Voronoi Graph Matching for Robot Localization and Mapping

  • Chapter
Transactions on Computational Science IX

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 6290))

Abstract

In this article, we develop a localization and map building approach for a mobile robot in which annotated generalized Voronoi graphs are used as the robot’s spatial representation of the environment. The core of our approach is a matching scheme for solving the data association problem of identifying corresponding parts in two tree-formed Voronoi graphs, one representing a local observation and the other one representing the robot’s internal map. Our approach is based on the notion of edit distance which means it computes the cost optimal way to transform both graphs into the same graph. The costs for adding or deleting branches are based on a measure that assesses the stability of nodes and edges in the graphs as well as their relevance for navigation. In addition, we incorporate spatial constraints based on the graph annotations which leads to a top-down dynamic programming implementation that performs reliably and efficiently in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aurenhammer, F.: Voronoi diagrams – A survey of a fundamental geometric data structure. ACM Computing Surveys 23(3), 345–405 (1991)

    Article  Google Scholar 

  2. Okabe, A., Sugihara, K., Chiu, S.N., Boots, B.: Spatial Tessellations - Concepts and Applications of Voronoi Diagrams. John Wiley and Sons, Chichester (2000)

    MATH  Google Scholar 

  3. Lee, D.T., Drysdale III, R.L.S.: Generalization of Voronoi diagrams in the plane. SIAM Journal on Computing 10(1), 73–87 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  4. Kirkpatrick, D.G.: Efficient computation of continuous skeletons. In: Annual IEEE Symposium on Foundations of Computer Science, pp. 18–27 (1979)

    Google Scholar 

  5. Ó’Dúnlaing, C., Yap, C.K.: A retraction method for planning the motion of a disc. Journal of Algorithms 6, 104–111 (1982)

    Article  Google Scholar 

  6. Latombe, J.C.: Robot Motion Planning. Kluwer Academic Publishers, Dordrecht (1991)

    Google Scholar 

  7. Remolina, E., Kuipers, B.: Towards a general theory of topological maps. Artificial Intelligence 152(1), 47–104 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kuipers, B.: The Spatial Semantic Hierarchy. Artificial Intelligence 119(1-2), 191–233 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Choset, H., Burdick, J.: Sensor-based exploration: The Hierarchical Generalized Voronoi Graph. The International Journal of Robotics Research 19(2), 96–125 (2000)

    Article  Google Scholar 

  10. Beeson, P., Jong, N.K., Kuipers, B.: Towards autonomous topological place detection using the Extended Voronoi Graph. In: IEEE International Conference on Robotics and Automation (ICRA 2005), pp. 4373–4379 (2005)

    Google Scholar 

  11. Moravec, H., Elfes, A.: High resolution maps from angle sonar. In: Proceedings of the IEEE Conference on Robotics and Automation (ICRA 1985), pp. 116–121 (1985)

    Google Scholar 

  12. Crowley, J.: World modeling and position estimation for a mobile robot using ultrasonic ranging. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA 1989), pp. 674–680 (1989)

    Google Scholar 

  13. Leonard, J.J., Durrant-Whyte, H.F.: Simultaneous map building and localization for an autonomous mobile robot. In: Proceedings of IEEE/RSJ International Workshop on Intelligent Robots and Systems, pp. 1442–1447 (1991)

    Google Scholar 

  14. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  15. Bar-Shalom, Y., Fortmann, T.E.: Tracking and Data Association. Academic Press, London (1988)

    MATH  Google Scholar 

  16. Grimson, W.E.L.: Object Recognition by Computer – The Role of Geometric Constraints. MIT Press, Cambridge (1990)

    Google Scholar 

  17. Bailey, T., Nieto, J., Nebot, E.: Consistency of the FastSLAM algorithm. In: IEEE International Conference on Robotics and Automation (ICRA 2006), pp. 424–429 (2006)

    Google Scholar 

  18. Wallgrün, J.O.: Autonomous construction of hierarchical Voronoi-based route graph representations. In: Freksa, C., Knauff, M., Krieg-Brückner, B., Nebel, B., Barkowsky, T. (eds.) Spatial Cognition IV. LNCS (LNAI), vol. 3343, pp. 413–433. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  19. Sanfeliu, A., Fu, K.: A distance measure between attributed relational graph. IEEE Transactions on Systems, Man and Cybernetics 13, 353–362 (1983)

    MATH  Google Scholar 

  20. Eshera, M.A., Fu, K.S.: An image understanding system using attributed symbolic representation and inexact graph-matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 8(5), 604–618 (1986)

    Article  Google Scholar 

  21. Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between trees and related problems. SIAM Journal on Computing 18(6), 1245–1262 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  22. Zhang, K., Statman, R., Shasha, D.: On the editing distance between unordered labeled trees. Information Processing Letters 42(3), 133–139 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sebastian, T.B., Klein, P.N., Kimia, B.B.: Recognition of shapes by editing their shock graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(5), 550–571 (2004)

    Article  Google Scholar 

  24. Blum, H.: A transformation for extracting new descriptors of shape. In: Wathen-Dunn, W. (ed.) Models for the Perception of Speech and Visual Form, pp. 362–381. MIT Press, Cambridge (1967)

    Google Scholar 

  25. Krieg-Brückner, B., Frese, U., Lüttich, K., Mandel, C., Mossakowski, T., Ross, R.: Specification of an Ontology for Route Graphs. In: Freksa, C., Knauff, M., Krieg-Brückner, B., Nebel, B., Barkowsky, T. (eds.) Spatial Cognition IV. LNCS (LNAI), vol. 3343, pp. 390–412. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  26. Wallgrün, J.O.: Hierarchical Voronoi Graphs – Spatial Representation and Reasoning for Mobile Robots. Springer, Heidelberg (2009)

    Google Scholar 

  27. Ogniewicz, R.L., Kübler, O.: Hierarchic Voronoi Skeletons. Pattern Recognition 28(3), 343–359 (1995)

    Article  Google Scholar 

  28. Siddiqi, K., Kimia, B.B.: A shock grammar for recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 507–513 (1996)

    Google Scholar 

  29. Mayya, N., Rajan, V.T.: Voronoi diagrams of polygons: A framework for shape representation. Journal of Mathematical Imaging and Vision 6(4), 355–378 (1996)

    Article  MathSciNet  Google Scholar 

  30. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  31. Neira, J., Tardós, J.D.: Data association in stochastic mapping using the joint compability test. IEEE Transactions on Robotics and Automation 17, 890–897 (2001)

    Article  Google Scholar 

  32. Mahalanobis, P.: On the generalized distance in statistics. Proceedings of the National Institute of Sciences of India 12, 49–55 (1936)

    Google Scholar 

  33. Bailey, T.: Mobile Robot Localisation and Mapping in Extensive Outdoor Environments. PhD thesis, University of Sydney (2001)

    Google Scholar 

  34. Wolter, D.: Spatial Representation and Reasoning for Robot Mapping - A Shape-Based Approach. Springer Tracts in Advanced Robotics, vol. 48. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  35. Lim, J.H., Leonard, J.J.: Mobile robot relocation from echolocation constraints. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(9), 1035–1041 (2000)

    Article  Google Scholar 

  36. Arras, K., Castellanos, J., Schilt, M., Siegwart, R.: Feature-based multi-hypothesis localization and tracking using geometric constraints. Robotics and Autonomous Systems Journal 44(1) (2003)

    Google Scholar 

  37. Aho, A., Hopcroft, J., Ullman, J.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading (1974)

    MATH  Google Scholar 

  38. Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: FastSLAM: A factored solution to the simultaneous localization and mapping problem. In: Proceedings of the AAAI National Conference on Artificial Intelligence, pp. 593–598 (2002)

    Google Scholar 

  39. Smith, R.C., Cheeseman, P.: On the representation and estimation of spatial uncertainty. The International Journal of Robotics Research 5(4), 56–68 (1986)

    Article  Google Scholar 

  40. Dissanayake, M.G., Newman, P., Clark, S., Durrant-Whyte, H., Csorba, M.: A solution to the simultaneous localization and map building (SLAM) problem. IEEE Transactions on Robotics and Automation 17(3), 229–241 (2001)

    Article  Google Scholar 

  41. Murphy, K.: Bayesian map learning in dynamic environments. In: Solla, S.A., Leen, T.K., Müller, K.R. (eds.) Advances in Neural Information Processing Systems 12, pp. 1015–1021. The MIT Press, Cambridge (2000)

    Google Scholar 

  42. Wallgrün, J.O.: Matching annotated generalized Voronoi graphs for autonomous robot localization and mapping. In: Anton, F., Bærentzen, J.A. (eds.) Proceedings of the 6th Annual International Symposium on Voronoi Diagrams in Science and Engineering. IEEE Computer Society, Los Alamitos (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wallgrün, J.O. (2010). Voronoi Graph Matching for Robot Localization and Mapping. In: Gavrilova, M.L., Tan, C.J.K., Anton, F. (eds) Transactions on Computational Science IX. Lecture Notes in Computer Science, vol 6290. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16007-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16007-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16006-6

  • Online ISBN: 978-3-642-16007-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics